Skip to main content
Log in

Rational Design of Two-Step Functionalized Barium Titanate for Improving Dielectric Properties of poly(Arylene Ether Nitrile) Composites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Ceramic/polymer dielectrics with excellent thermal stability and high dielectric performance exhibit great potential in advanced capacitor applications. It is still a major challenge for ceramic/polymer dielectrics to obtain high dielectric constant at low content while maintaining excellent flexibility. To alleviate this issue, here, a flexible polymer dielectric composite consisting of poly(arylene ether nitrile) (PEN) matrix and barium titanate filler coated by Carbon and polypyrone (h-BT@C@PPy) was put forward in this work. The as-prepared composite films displayed high dielectric constant, comparable low loss and favorable interfacial binding due to the hydrogen-bonding interaction between –NH of h-BT@C@PPy and –CN of PEN, effectively promoting the interfacial polarization and remedying the internal interface defects between h-BT and PEN. Consequently, an addition of 8 wt% h-BT@C@PPy into PEN matrix raised the dielectric constant from 3.82 to 13.3 at 1 kHz, while maintaining relatively low dielectric loss (0.05@1 kHz). However, the breakdown strength showed a decreasing trend with the lowest value of 60.37 kV mm−1. Meanwhile, the better flexibility, outstanding thermal stability (the 5% weight loss above 500 °C) as well as excellent permittivity-temperature stability was also delivered by the PEN-based composite films. This strategy furnishes a perspective to design ceramic/polymer dielectrics with high-k achieved at low filler content for the applications of organic film capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. M. Yang, Q. Li, X. Zhang, E. Bilotti, C. Zhang, C. Xu, S. Gan, Z.-M. Dang, Prog. Mater. Sci. 128, 100968 (2022)

    Article  Google Scholar 

  2. R. Behera, K. Elanseralathan, J. Energy Storage. 48, 103788 (2022)

    Article  Google Scholar 

  3. H. Chi, W. He, D. Zhao, R. Ma, Y. Zhang, Z. Jiang, Sci. China Mater. 66, 22–34 (2023)

    Article  CAS  Google Scholar 

  4. Q. Yuan, M. Chen, S. Zhan, Y. Li, Y. Lin, H. Yang, Chem. Eng. J. 446, 136315 (2022)

    Article  CAS  Google Scholar 

  5. H.P.P.V. Shanmugasundram, E. Jayamani, K.H. Soon, Renew. Sust Energy Rev. 157, 112075 (2022)

    Article  Google Scholar 

  6. L. Yang, H. Wang, S. Fang, M. Li, J. Alloy Compd. 960, 170831 (2023)

    Article  CAS  Google Scholar 

  7. F. Wu, A. Xie, L. Jiang, S. Mukherjee, H. Gao, J. Shi, J. Wu, H. Shang, Z. Sheng, R. Guo, L. Wu, J. Liu, M.E. Suss, A. Terzis, W. Li, H. Zeng, Adv. Funct. Mater. 33, 2212861 (2023)

    Article  CAS  Google Scholar 

  8. L. Cheng, H. Gao, K. Liu, H. Tan, P. Fan, Y. Liu, Y. Hu, Z. Yan, H. Zhang, Macromol. Mater. Eng. 307, 2100822 (2022)

    Article  CAS  Google Scholar 

  9. J. Peng, T. Cao, Y. You, X. Liu, Y. Huang, Polymer. 283, 126229 (2023)

    Article  CAS  Google Scholar 

  10. D.W. Shin, S.Y. Lee, N.R. Kang, K.H. Lee, M.D. Guiver, Y.M. Lee, Macromolecules. 46, 3452–3460 (2013)

    Article  CAS  Google Scholar 

  11. H. Yin, W. Zhong, M. Yin, C. Kang, L. Shi, H. Tang, C. Yang, J.T. Althakafy, M. Huang, A.K. Alanazi, L. Qu, Y. Li, Adv. Compos. Hybrid. Mater. 5, 2031–2041 (2022)

    Article  CAS  Google Scholar 

  12. S.K. Behera, M. Panda, R.K. Pradhan, Appl. Phys. A 129, 798 (2023)

    Article  CAS  Google Scholar 

  13. S.K. Behera, M. Panda, R.K. Pradhan, Mod. Phys. Lett. B 38, 2350198 (2024)

    Article  CAS  Google Scholar 

  14. M. Panda, Indian J. Phys. 96, 1699–1703 (2022)

    Article  CAS  Google Scholar 

  15. M. Panda, Appl. Phys. Lett. 111, 082901 (2017)

    Article  Google Scholar 

  16. M. Panda, A. Mishra, P. Shukla, SN Appl. Sci. 01, 230 (2019)

    Article  Google Scholar 

  17. M. Panda, A. Trivedi, Ferroelectrics. 572, 236 (2020)

    Google Scholar 

  18. H. Wu, F. Zhuo, H. Qiao, L.K. Venkataraman, M. Zheng, S. Wang, H. Huang, B. Li, X. Mao, Q. Zhang, Energy Environ. Mater. 5, 486–514 (2022)

    Article  CAS  Google Scholar 

  19. H. Zhang, M.A. Marwat, B. Xie, M. Ashtar, K. Liu, Y. Zhu, L. Zhang, P. Fan, C. Samart, Z. Ye, ACS Appl. Mater. Interfaces. 12, 1–37 (2020)

    Article  PubMed  Google Scholar 

  20. Z.-H. Dai, T. Li, Y. Gao, J. Xu, J. He, Y. Weng, B.-H. Guo, Compos. Sci. Technol. 169, 142–150 (2019)

    Article  CAS  Google Scholar 

  21. G. Wang, Y. Deng, Y. Wang, H. Gao, J. Mater. Chem. C 5, 3112–3120 (2017)

    Article  CAS  Google Scholar 

  22. W. Xu, G. Yang, L. Jin, J. Liu, Y. Zhang, Z. Zhang, Z. Jiang, ACS Appl. Mater. Interfaces. 10, 11233–11241 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. L. Xie, X. Huang, C. Wu, P. Jiang, J. Mater. Chem. 21, 5897–5906 (2011)

    Article  CAS  Google Scholar 

  24. Y. Zhang, X. Zhang, H. Ye, L. Xu, J. Mater. Sci. : Mater. Electron. 33, 22899–22912 (2021)

    Google Scholar 

  25. R.W. Sillars, J. Inst. Electr. Eng. 80, 378–394 (2010)

    Google Scholar 

  26. X. Xie, Z. He, X. Qi, J. Yang, Y. Lei, Y. Wang, Chem. Sci. 10, 8224–8235 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Chen, D. Ren, B. Li, M. Xu, X. Liu, Polym Test. 96, 107091 (2021)

    Article  CAS  Google Scholar 

  28. J. Wang, M. Wang, C. Liu, H. Zhou, X. Jian, Polym. Bull. 70, 1467–1481 (2013)

    Article  CAS  Google Scholar 

  29. M. Feng, M. Chen, J. Qiu, M. He, Y. Huang, J. Lin, J. Alloy Compd. 856, 158213 (2021)

    Article  CAS  Google Scholar 

  30. X. Zhang, S. Zhao, F. Wang, Y. Ma, L. Wang, D. Chen, C. Zhao, W. Yang, Appl. Surf. Sci. 403, 71–79 (2017)

    Article  CAS  Google Scholar 

  31. Z. He, X. Yu, J. Yang, N. Zhang, T. Huang, Y. Wang, Z. Zhou, Compos. A 104, 89–100 (2018)

    Article  CAS  Google Scholar 

  32. J. Yang, X. Xie, Z. He, Y. Lu, X. Qi, Y. Wang, Chem. Eng. J. 355, 137–149 (2019)

    Article  CAS  Google Scholar 

  33. J. Li, C. Liu, New. J. Chem. 33, 1474–1477 (2009)

    Article  CAS  Google Scholar 

  34. S. Wang, X. Huang, Y. He, H. Huang, Y. Wu, L. Hou, X. Liu, T. Yang, J. Zou, Carbon. 50, 2119–2125 (2012)

    Article  CAS  Google Scholar 

  35. S. Yan, C. Xu, J. Jiang, D. Liu, Z. Wang, J. Tang, L. Zhen, J. Magn. Magn. Mater. 349, 159–164 (2014)

    Article  CAS  Google Scholar 

  36. X. Zhang, P. Guan, X. Dong, Appl. Phys. Lett. 96, 223111 (2010)

    Article  Google Scholar 

  37. Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen, H. Wang, ACS Appl. Mater. Interfaces. 9, 4024–4033 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. S. Liu, J. Wang, H. Hao, L. Zhao, J. Zhai, Ceram. Int. 44, 22850–22855 (2018)

    Article  CAS  Google Scholar 

  39. B. Wan, H. Li, Y. Xiao, S. Yue, Y. Liu, Q. Zhang, Appl. Surf. Sci. 501, 144243 (2020)

    Article  CAS  Google Scholar 

  40. Z. Li, F. Liu, G. Yang, H. Li, L. Dong, C. Xiong, Q. Wang, Compos. Sci. Technol. 164, 214–221 (2018)

    Article  CAS  Google Scholar 

  41. C. Baek, J.E. Wang, S. Moon, C.H. Choi, D.K. Kim, J. Am. Ceram. Soc. 99, 3802–3808 (2016)

    Article  CAS  Google Scholar 

  42. Y. Feng, J. Lia, W. Li, M. Li, Q. Chi, T. Zhang, W. Fei, Compos. A 125, 105524 (2019)

    Article  CAS  Google Scholar 

  43. Y. Wang, J. Cui, L. Wang, Q. Yuan, Y. Niu, J. Chen, Q. Wang, H. Wang, J. Mater. Chem. A 5, 4710–4718 (2017)

    Article  CAS  Google Scholar 

  44. K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai, X. Wang, Y. Huang, Nano Energy. 51, 513–523 (2018)

    Article  CAS  Google Scholar 

  45. P. Hu, S. Gao, Y. Zhang, L. Zhang, C. Wang, Compos. Sci. Technol. 156, 109–116 (2018)

    Article  CAS  Google Scholar 

  46. B. Paul, L. Bailly, D. Begue, C. Lartigau-Dagron, B. Hassoune-Rhabbour, V. Nassiet, Polym. Degrad. Stabil. 208, 110250 (2023)

    Article  CAS  Google Scholar 

  47. Y. You, S. Liu, L. Tu, Y. Wang, C. Zhan, X. Du, R. Wei, X. Liu, Macromolecules. 52, 5850–5859 (2019)

    Article  CAS  Google Scholar 

  48. C. Zhang, B. Anasori, A. Seral-Ascaso, S. Park, N. Mcevoy, A. Shmeliov, G. Duesberg, J. Coleman, Y. Gogotsi, V. Nicolosi, Adv. Mater. 29, 1702678 (2017)

    Article  Google Scholar 

  49. Y. Feng, Q. Deng, C. Peng, Q. Wu, Ceram. Int. 45, 7923–7930 (2019)

    Article  CAS  Google Scholar 

  50. Y. Lu, W.-Y. Wang, F. Xue, J.-H. Yang, X.-D. Qi, Z.-W. Zhou, Y. Wang, Chem. Eng. J. 345, 353–363 (2018)

    Article  CAS  Google Scholar 

  51. Y. Chen, B. Lin, X. Zhang, J. Wang, C. Lai, Y. Sun, Y. Liu, H. Yang, J. Mater. Chem. A 2, 14118–14126 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank for financial support of this work from the Opening Project of Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource (Grant No. 2021ABPCR009).

Author information

Authors and Affiliations

Authors

Contributions

JL:designed and performed the experiments; All authors, JLand MF: contributed to the data analysis and the discussions; MF: wrote the original draft and revised this paper; All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mengna Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Feng, M. Rational Design of Two-Step Functionalized Barium Titanate for Improving Dielectric Properties of poly(Arylene Ether Nitrile) Composites. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-023-02980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02980-7

Keywords

Navigation