Skip to main content
Log in

Morphological Effect of ZIFs as the Promotion of Surface-Potential-Adsorption for Antibacterial Performance

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

ZIFs of different morphologies were synthesized by different solvents. Three types of ZIFs with different morphologies, ZIF-M, ZIF-P, and ZIF-L, were prepared using anhydrous methanol, polyethylene glycol-400, and water as solvents, respectively. The morphologies of ZIF-M and ZIF-L are rhombic dodecahedron and blade-like, respectively. Wherein the ZIF-M sample using methanol as solvent has an unusual morphology of high internal specific surface and pore volume. The ZIFs were characterized by XRD, SEM, AAS, N2 adsorption isotherms, pore size distribution, and evaluated with S. aureus and E. coli to gain antibacterial activity. Using the determination of growth curves, plate counting method and circle of inhibition method, the results showed that ZIF-M like has high antibacterial properties for ZIF-L and ZIF-P. Folding and rupture of the cell walls of dead bacteria was found by measuring the SEM of the bacteria. ZIF-M has the largest specific surface area, better potential properties and highest Zn2+ release, which leads to the high antibacterial effect of ZIF-M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhao, M. Zheng, X. Gao et al., The application of MOFs-based materials for antibacterial adsorption. Coord. Chem. Rev. 440, 213970 (2021)

    Article  CAS  Google Scholar 

  2. M. Zhang, S. Ye, J. Wang, K.Y.J. Cao, G. Li, X. Liao, In situ growth zeolite imidazole framework materials on chitosan for greatly enhanced antibacterial effect. Int. J. Biol. Macromol. 186, 639–648 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Kong, W. Zhang, T. He, X. Yang, W. Bi, J. Li, W. Yang, W. Chen, Asymmetric wettable polycaprolactone-chitosan/chitosan oligosaccharide nanofibrous membrane as antibacterial dressings. Carbohydr. Polym. 304, 120485 (2023)

    Article  CAS  PubMed  Google Scholar 

  4. D. Saliba, M. Ammar, M. Rammal et al., Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 140(5), 1812–1823 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. R. Douaihy, M. Ghoul, M.L. Hmadeh, Banding for controlled size and growth of zeolitic-imidazolate frameworks. Small 15(28), e1901605 (2019)

    Article  Google Scholar 

  6. P. Yao, Y. Liu, X. Tang, S. Lu, Y. Yao, Synthesis of reusable NH2-MIL-125(Ti)@polymer monolith as efficient adsorbents for dyes wastewater remediation. Green. Chem. Eng. 4 (2023) 439-446. 

    Article  Google Scholar 

  7. G. Guan, L. Zhang, J. Zhu, H. Wu, W. Li, Q. Sun, Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. J. Hazard Mater. 402, 123542 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. G. Huang, Y. Li, Z. Qin, Q. Liang, C. Xu, B. Lin, Hybridization of carboxymethyl chitosan with MOFs to construct recyclable, long-acting and intelligent antibacterial agent carrier. Carbohydr. Polym. 233, 115848 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. H. Ma, S. Yang, M. Li et al., Preparation and photocatalytic antibacterial mechanism of porous metastable beta-Bi2O3 nanosheets. Ceram. Int. 47(24), 34092–34105 (2021)

    Article  CAS  Google Scholar 

  10. S. Khattak, X. Qin, L. Huang et al., Preparation and characterization of antibacterial bacterial cellulose/chitosan hydrogels impregnated with silver sulfadiazine. Int. J. Biol. Macromol. 189, 483–493 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. J. Deng, Z. Dai, L. Deng, Effects of the morphology of the ZIF on the CO2 separation performance of MMMs. Ind. Eng. Chem. Res. 59(32), 14458–14466 (2020)

    Article  CAS  Google Scholar 

  12. Y. Li, P. Li, C. Zhang, K. He, Y. Chen, X. Liao, Dual zn source strategy for synthesizing ZIFs: zero discharge, less raw material, high output, and better adsorptive performance. CrystEngComm 25, 4325–4332 (2023)

    Article  CAS  Google Scholar 

  13. M. Malekmohammadi, S. Fatemi, M. Razavian, A. Nouralishahi, A comparative study on ZIF-8 synthesis in aqueous and methanolic solutions: effect of temperature and ligand content. Solid State Sci. 91, 108–112 (2019)

    Article  CAS  Google Scholar 

  14. M. Jian, B. Liu, R. Liu, J. Qu, H. Wang, X. Zhang, Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv. 5, 48433–48441 (2015)

    Article  CAS  Google Scholar 

  15. H. Zhang, X. Hu, T. Li et al., MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: a review. J. Hazard Mater. 429, 128271 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. M. Shahmirzaee, A. Hemmati-Sarapardeh, M. Husein, M. Schaffie, M. Ranjbar, Development of a powerful zeolitic imidazolate framework (ZIF-8)/carbon fiber nanocomposite for separation of hydrocarbons and crude oil from wastewater. Microporous Mesoporous Mater. 307, 110463 (2020)

    Article  CAS  Google Scholar 

  17. W. Cai, W. Zhang, Z. Chen, Magnetic Fe3O4@ZIF-8 nanoparticles as a drug release vehicle: pH-sensitive release of norfloxacin and its antibacterial activity. Colloids Surf. B 223, 113170 (2023)

    Article  CAS  Google Scholar 

  18. Y. Feng, H. Wang, J. Yao, Synthesis of 2D nanoporous zeolitic imidazolate framework nanosheets for diverse applications. Coord. Chem. Rev. 431, 213677 (2020)

    Article  Google Scholar 

  19. G.P. Chuy, P.C.L. Muraro, A.R. Viana, G. Pavoski, D.C.R. Espinosa, B.S. Vizzotto, W.L. da Silva, Green nanoarchitectonics of silver nanoparticles for antimicrobial activity against resistant pathogens. J. Inorg. Organomet. Polym. Mater. 32, 1213–1222 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. A. Karimi, A. Khataee, V. Vatanpour et al., High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Sep. Purif. Technol. 229(C), 115838 (2019)

    Article  CAS  Google Scholar 

  21. Q. Deng, R. Zhai, B. Chen, X. Jiang, H. Li, C. Li, M. Jin, One-pot synthesis of rod-like lignin@zeolitic imidazolate framework-8 with enhanced immobilization of β-glucosidase. Ind. Crops Prod. 196, 116473 (2023)

    Article  CAS  Google Scholar 

  22. S. Dursun, H. Akyıldız, V. Kalem, Production of CuCoO2 nanoparticle/SnO2 nanofiber heterostructures for visible light photocatalytic applications. J. Photochem. Photobiol. A 434, 114233 (2023)

    Article  CAS  Google Scholar 

  23. D. Ma, P. Li, X. Duan et al., A hydrolytically stable vanadium(IV) metal-organic framework with photocatalytic bacteriostatic activity for autonomous indoor humidity control. Angew. Chem. Int. Ed. 59(10), 3905–3909 (2020)

    Article  CAS  Google Scholar 

  24. L.D. Pompeu, P.C.L. Muraro, G. Chuy, B.S. Vizzotto, G. Pavoski, D.C.R. Espinosa, L. da Silva Fernandes, W.L. da Silva, Adsorption for rhodamine b dye and biological activity of nano-porous chitosan from shrimp shells. Environ. Sci. Pollut. Res. 29, 49858–49869 (2022)

    Article  CAS  Google Scholar 

  25. S. Dursun, Production of novel hazelnut shell-based semi-IPN biocomposite absorbents and their use in removing heavy metal ions from water. Environ. Sci. Pollut. Res. 30, 44276–44291 (2023)

    Article  CAS  Google Scholar 

  26. S. Ghosh, D. Ghosh, P. Bag et al., Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics. Nanoscale 3(3), 1139–1148 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. J. Chen, Z. Huang, H. Zhang et al., Three-dimensional layered nanofiber sponge with in situ grown silver-metal organic framework for enhancing wound healing. Chem. Eng. J. 443, 136234 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

CZ: Formal analysis, Investigation, Writing—review & editing. XL: Investigation, Writing—review & editing, ZZ: Data curation, Validation. KT: Investigation, Validation. YY: Investigation, Validation. XL: Project administration, Writing—review & editing.

Corresponding author

Correspondence to Xiaoyuan Liao.

Ethics declarations

Conflict of interest

All authors declare that they have no confict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 205.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, X., Zhang, Z. et al. Morphological Effect of ZIFs as the Promotion of Surface-Potential-Adsorption for Antibacterial Performance. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-023-02971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02971-8

Keywords

Navigation