Skip to main content

Advertisement

Log in

Comparison of Multi-metallic Nanoparticles-Alternative Antibacterial Agent: Understanding the Role of Their Antibacterial Properties

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The rise of antibiotic-resistant infectious diseases caused by various bacterial pathogens has emerged as a major global health concern. As a result, there has been a growing effort to develop innovative antimicrobial materials as an alternative solution to combat multidrug-resistant (MDR) bacteria. Among these materials, metal nanoparticles (MNPs), particularly multi-metallic nanoparticles (MMNPs), have been found to demonstrate promising potential in fighting against antimicrobial resistance. The unique physiochemical properties and excellent biocompatibility of MMNPs contribute to their remarkable antimicrobial activity. MMNPs, composed of multiple metals, exhibit diverse electronic, optical, and magnetic properties. These multifunctional characteristics, including size, shape, surface area to volume ratio, and surface charge potential, facilitate favorable interactions with bacterial cell membranes. Consequently, MMNPs can disrupt the bacteria cell membrane, metal ion release, biomolecule damage, induce the generation of reactive oxygen species (ROS), cause protein dysfunction, and inflict DNA damage within the bacterial host’s environment. This scientific review aims to provide a comprehensive summary and comparison of research progress concerning the antibacterial activities of multi-metallic nanoparticles, as well as their synergistic effects. Additionally, the scientific review elucidates the mechanisms through which MMNPs exert their antibacterial effects. Significant emphasis has been placed on recent promising advances of MMNPs that aid in overcoming antibacterial resistance. The physiochemical and multifunctional properties of MMNPs play a pivotal role in determining their effectiveness against bacterial infections. By integrating current knowledge on the antibacterial activities of MMNPs, this scientific review offers valuable insights into the potential applications of MMNPs in combating bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health O, WHO global strategy for containment of antimicrobial resistance (World Health Organization, Geneva, 2001), p.99

    Google Scholar 

  2. World Health O, The evolving threat of antimicrobial resistance: options for action (World Health Organization, Geneva, 2012), p.119

    Google Scholar 

  3. P.S. Yap, B.C. Yiap, H.C. Ping, S.H. Lim, Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 8, 6–14 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S.B. Almasaudi, Acinetobacter spp. as nosocomial pathogens: epidemiology and resistance features. Saudi J. Biol. Sci. 25(3), 586–596 (2018)

    Article  PubMed  Google Scholar 

  5. T. Wei, Q. Yu, H. Chen, Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv. Healthc. Mater. 8(3), 1801381 (2019)

    Article  CAS  Google Scholar 

  6. Y.N. Slavin, J. Asnis, U.O. Hafeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 1–20 (2017)

    Article  Google Scholar 

  7. A.A. Yaqoob, T. Parveen, K. Umar, M.N.M. Ibrahim, Role of nanomaterials in the treatment of wastewater: a review. Water 12(2), 495 (2020)

    Article  CAS  Google Scholar 

  8. S.T. Khan, J. Musarrat, A.A. Al-Khedhairy, Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloid Surf. B 146, 70–83 (2016)

    Article  CAS  Google Scholar 

  9. E.C. Dreaden, A.M. Alkilany, X.H. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. X. Zhu, A.F. Radovic-Moreno, J. Wu, R. Langer, J.J. Shi, Nanomedicine in the management of microbial infection—overview and perspectives. Nano Today 9(4), 478–498 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M.I. Ismail, H.A. Qari, K. Umar, M.N.M. Ibrahim, Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front. Chem. 8, 00341 (2020)

    Article  CAS  Google Scholar 

  12. W.W. Gao, S. Thamphiwatana, P. Angsantikul, L.F. Zhang, Nanoparticle approaches against bacterial infections. Wires Nanomed. Nanobiotechnol 6(6), 532–547 (2014)

    Article  CAS  Google Scholar 

  13. J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11(6), 371–384 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. P. Kalakonda, S. Banne, Synthesis and optical properties of highly stabilized peptide-coated silver nanoparticles. Plasmonics 13(4), 1265–1269 (2018)

    Article  CAS  Google Scholar 

  15. P. Kalakonda, M.A. Aldhahri, M.S. Abdel-wahab, A. Tamayol, K.M. Moghaddam, F. Ben Rached, A. Pain, A. Khademhosseini, A. Memic, S. Chaieb, Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties. Rsc Adv. 7(55), 34331–34338 (2017)

    Article  CAS  Google Scholar 

  16. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9(3), 217–227 (2016)

    CAS  Google Scholar 

  17. S.P. Dubey, M. Lahtinen, M. Sillanpaa, Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45(7), 1065–1071 (2010)

    Article  CAS  Google Scholar 

  18. J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 32(1), 79–84 (2009)

    Article  PubMed  Google Scholar 

  19. N. Vigneshwaran, N.M. Ashtaputre, P.V. Varadarajan, R.P. Nachane, K.M. Paralikar, R.H. Balasubramanya, Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61(6), 1413–1418 (2007)

    Article  CAS  Google Scholar 

  20. R.B. Asamoah, E. Annan, B. Mensah, P. Nbelayim, V. Apalangya, B. Onwona-Agyeman, A. Yaya, A comparative study of antibacterial activity of CuO/Ag and ZnO/Ag nanocomposites. Adv. Mater. Sci. Eng. 2020, 1–18 (2020)

    Article  Google Scholar 

  21. E.A. Mohamed, Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon 6(1), e03123 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  22. P. Kalakonda, B. Sreenivas, Synthesis and optical properties of highly stabilized peptide-coated gold nanoparticles. Plasmonics 12(4), 1221–1225 (2017)

    Article  CAS  Google Scholar 

  23. K. Kalishwaralal, V. Deepak, S.R.K. Pandian, M. Kottaisamy, S. BarathManiKanth, B. Kartikeyan, S. Gurunathan, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloid Surf. B 77(2), 257–262 (2010)

    Article  CAS  Google Scholar 

  24. N. Bala, S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, P. Nandy, Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 5(7), 4993–5003 (2015)

    Article  CAS  Google Scholar 

  25. P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 22(12), 1825–1834 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. A.A. Barzinjy, S.M. Hamad, A.F. Abdulrahman, S.J. Biro, A.A. Ghafor, Biosynthesis, characterization and mechanism of formation of ZnO nanoparticles using petroselinum crispum leaf extract. Curr. Org. Synth. 17(7), 558–566 (2020)

    Article  CAS  Google Scholar 

  27. H. Jan, M. Shah, H. Usman, M.A. Khan, M. Zia, C. Hano, B.H. Abbasi, Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan columbine (Aquilegia pubiflora). Front. Mater. 7, 00249 (2020)

    Article  Google Scholar 

  28. M. Arakha, M. Saleem, B.C. Mallick, S. Jha, The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. Uk 5, 9578 (2015)

    Article  CAS  Google Scholar 

  29. A.V. Kirthi, A.A. Rahuman, G. Rajakumar, S. Marimuthu, T. Santhoshkumar, C. Jayaseelan, G. Elango, A.A. Zahir, C. Kamaraj, A. Bagavan, Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater. Lett. 65(17–18), 2745–2747 (2011)

    Article  CAS  Google Scholar 

  30. C. Jayaseelan, A.A. Rahuman, S.M. Roopan, A.V. Kirthi, J. Venkatesan, S.K. Kim, M. Iyappan, C. Siva, Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim. Acta A 107, 82–89 (2013)

    Article  CAS  Google Scholar 

  31. M. Yang, F. Lu, T.T. Zhou, J.J. Zhao, C.B. Ding, A. Fakhri, V.K. Gupta, Biosynthesis of nano bimetallic Ag/Pt alloy from Crocus sativus L extract: biological efficacy and catalytic activity. J. Photochem. Photobiol. B. 212, 112025 (2020)

    Article  CAS  PubMed  Google Scholar 

  32. L. Argueta-Figueroa, R.A. Morales-Luckie, R.J. Scougall-Vilchis, O.F. Olea-Mejia, Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog. Nat. Sci.-Mater. 24(4), 321–328 (2014)

    Article  CAS  Google Scholar 

  33. G.R.S. Andrade, C.C. Nascimento, Z.M. Lima, E. Teixeira-Neto, L.P. Costa, I.F. Gimenez, Star-shaped ZnO/Ag hybrid nanostructures for enhanced photocatalysis and antibacterial activity. Appl. Surf. Sci. 399, 573–582 (2017)

    Article  CAS  Google Scholar 

  34. T. Sinha, M. Ahmaruzzaman, P.P. Adhikari, R. Bora, Green and environmentally sustainable fabrication of Ag-SnO2 nanocomposite and its multifunctional efficacy as photocatalyst and antibacterial and antioxidant agent. ACS Sustain. Chem. Eng. 5(6), 4645–4655 (2017)

    Article  CAS  Google Scholar 

  35. O. Antonoglou, K. Lafazanis, S. Mourdikoudis, G. Vourlias, T. Lialiaris, A. Pantazaki, C. Dendrinou-Samara, Biological relevance of CuFeO2 nanoparticles: antibacterial and anti-inflammatory activity, genotoxicity, DNA and protein interactions. Mater. Sci. Eng. C-Mater. 99, 264–274 (2019)

    Article  CAS  Google Scholar 

  36. E. Addae, X.L. Dong, E. McCoy, C. Yang, W. Chen, L.J. Yang, Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulfide core/shell nanoparticles to bacterial spores and cells. J. Biol. Eng. 8, 1–11 (2014)

    Article  Google Scholar 

  37. Q.G. He, C.Y. Huang, J. Liu, Preparation, characterization and antibacterial activity of magnetic greigite and Fe3S4/Ag nanoparticles. Nanosci. Nanotech. Lett. 6(1), 10–17 (2014)

    Article  CAS  Google Scholar 

  38. V. Iribarnegaray, N. Navarro, L. Robino, P. Zunino, J. Morales, P. Scavone, Magnesium-doped zinc oxide nanoparticles alter biofilm formation of Proteus mirabilis. Nanomedicine UK 14(12), 1551–1564 (2019)

    Article  CAS  Google Scholar 

  39. A.S. Lozhkomoev, O.V. Bakina, A.V. Pervikov, S.O. Kazantsev, E.A. Glazkova, Synthesis of CuO-ZnO composite nanoparticles by electrical explosion of wires and their antibacterial activities (vol 30, pg 13209, 2019). J. Mater. Sci.-Mater. Electron. 30(15), 14822–14822 (2019)

    Article  CAS  Google Scholar 

  40. X.M. Chen, S. Ku, J.A. Weibel, E. Ximenes, X.Y. Liu, M. Ladisch, S.V. Garimella, Enhanced antimicrobial efficacy of bimetallic porous CuO microspheres decorated with Ag nanoparticles. ACS Appl. Mater. Interfaces 9(45), 39165–39173 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. J. Al-Haddad, F. Alzaabi, P. Pal, K. Rambabu, F. Banat, Green synthesis of bimetallic copper-silver nanoparticles and their application in catalytic and antibacterial activities. Clean. Technol. Environ. 22(1), 269–277 (2020)

    Article  CAS  Google Scholar 

  42. D. Lomeli-Marroquin, D.M. Cruz, A. Nieto-Arguello, A.V. Crua, J.J. Chen, A. Torres-Castro, T.J. Webster, J.L. Cholula-Diaz, Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int. J. Nanomed. 14, 2171–2189 (2019)

    Article  CAS  Google Scholar 

  43. Y.H. Dong, H.L. Zhu, Y.Y. Shen, W.T. Zhang, L. Zhang, Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS ONE 14(9), e222322 (2019)

    Article  Google Scholar 

  44. E.A. Ortiz-Benitez, N. Velazquez-Guadarrama, N.V.D. Figueroa, H. Quezada, J.D. Olivares-Trejo, Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics 11(7), 1265–1276 (2019)

    Article  CAS  PubMed  Google Scholar 

  45. S. Mohana, S. Sumathi, Multi-functional biological effects of palladium nanoparticles synthesized using Agaricus bisporus. J. Clust. Sci. 31(2), 391–400 (2020)

    Article  CAS  Google Scholar 

  46. P. Narayanasamy, B.L. Switzer, B.E. Britigan, Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci. Rep. Uk 5, 08824 (2015)

    Article  CAS  Google Scholar 

  47. A.H. Keihan, H. Veisi, H. Veasi, Green synthesis and characterization of spherical copper nanoparticles as organometallic antibacterial agent. Appl. Organomet. Chem. 31(7), 3642 (2017)

    Article  Google Scholar 

  48. K.B.A. Ahmed, T. Raman, V. Anbazhagan, Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Adv. 6(50), 44415–44424 (2016)

    Article  Google Scholar 

  49. N.A. Smirnov, S.I. Kudryashov, A.A. Nastulyavichus, A.A. Rudenko, I.N. Saraeva, E.R. Tolordava, S.A. Gonchukov, Y.M. Romanova, A.A. Ionin, D.A. Zayarny, Antibacterial properties of silicon nanoparticles. Laser Phys. Lett. 15(10), 105602 (2018)

    Article  Google Scholar 

  50. S. Menon, H. Agarwal, S. Rajeshkumar, P.J. Rosy, V.K. Shanmugam, Investigating the antimicrobial activities of the biosynthesized selenium nanoparticles and its statistical analysis. Bionanoscience 10(1), 122–135 (2020)

    Article  Google Scholar 

  51. V. Cittrarasu, D. Kaliannan, K. Dharman, V. Maluventhen, M. Easwaran, W.C. Liu, B. Balasubramanian, M. Arumugam, Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci. Rep. Uk 11(1), 1032 (2021)

    Article  CAS  Google Scholar 

  52. L.D. Geoffrion, T. Hesabizadeh, D. Medina-Cruz, M. Kusper, P. Taylor, A. Vernet-Crua, J.J. Chen, A. Ajo, T.J. Webster, G. Guisbiers, Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega 5(6), 2660–2669 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. U. Kamran, H.N. Bhatti, M. Iqbal, S. Jamil, M. Zahid, Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J. Mol. Struct. 1179, 532–539 (2019)

    Article  CAS  Google Scholar 

  54. L. Katata-Seru, T. Moremedi, O.S. Aremu, I. Bahadur, Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J. Mol. Liq. 256, 296–304 (2018)

    Article  CAS  Google Scholar 

  55. V. Manikandan, P. Velmurugan, J.H. Park, W.S. Chang, Y.J. Park, P. Jayanthi, M. Cho, B.T. Oh, Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech 7, 0670 (2017)

    Article  Google Scholar 

  56. H. Qamar, S. Rehman, D.K. Chauhan, A.K. Tiwari, V. Upmanyu, Green synthesis, characterization and antimicrobial activity of copper oxide nanomaterial derived from Momordica charantia. Int. J. Nanomed. 15, 2541–2553 (2020)

    Article  CAS  Google Scholar 

  57. V. Tiwari, N. Mishra, K. Gadani, P.S. Solanki, N.A. Shah, M. Tiwari, Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 9, 1218 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  58. N.E. Eisa, S. Almansour, I.A. Alnaim, A.M. Ali, E. Algrafy, K.M. Ortashi, M.A. Awad, P. Virk, A.A. Hendi, F.Z. Eissa, Eco-synthesis and characterization of titanium nanoparticles: testing its cytotoxicity and antibacterial effects. Green Process. Synthn. 9(1), 462–468 (2020)

    Article  Google Scholar 

  59. N. Behera, M. Arakha, M. Priyadarshinee, B.S. Pattanayak, S. Soren, S. Jha, B.C. Mallick, Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Adv. 9(43), 24888–24894 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S. Saqib, M.F.H. Munis, W. Zaman, F. Ullah, S.N. Shah, A. Ayaz, M. Farooq, S. Bahadur, Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc. Res. Techn. 82(4), 415–420 (2019)

    Article  CAS  Google Scholar 

  61. P.N.V.K. Pallela, S. Ummey, L.K. Ruddaraju, S. Gadi, C.S. Cherukuri, S. Barla, S.V.N. Pammi, Antibacterial efficacy of green synthesized alpha-Fe2O3 nanoparticles using Sida cordifolia plant extract. Heliyon 5(11), e02765 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  62. G. Marquis, B. Ramasamy, S. Banwarilal, A.P. Munusamy, Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract. J. Photoch. Photobiol. B 155, 28–33 (2016)

    Article  CAS  Google Scholar 

  63. J. Maji, S. Pandey, S. Basu, Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bull. Mater. Sci. 43(1), 1–10 (2019)

    Google Scholar 

  64. P. Suryavanshi, R. Pandit, A. Gade, M. Derita, S. Zachino, M. Rai, Colletotrichum sp- mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. Lwt-Food Sci. Technol. 81, 188–194 (2017)

    Article  CAS  Google Scholar 

  65. O.L. Pop, A. Mesaros, D.C. Vodnar, R. Suharoschi, F. Tabaran, L. Magerusan, I.S. Todor, Z. Diaconeasa, A. Balint, L. Ciontea, C. Socaciu, Cerium oxide nanoparticles and their efficient antibacterial application in vitro against gram-positive and gram-negative pathogens. Nanomaterials Basel 10(8), 1614 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. G.S. Kumar, B. Venkataramana, S.A. Reddy, H. Maseed, R.R. Nagireddy, Hydrothermal synthesis of Mn3O4 nanoparticles by evaluation of pH effect on particle Size formation and its antibacterial activity. Adv. Nat. Sci.-Nanosci. 11(3), 035006 (2020)

    Article  CAS  Google Scholar 

  67. M. Khan, M.R. Shaik, S.T. Khan, F.A. Syed, M. Kuniyil, M. Khan, A.A. Al-Warthan, M.R.H. Siddiqui, M.N. Tahir, Enhanced antimicrobial activity of biofunctionalized zirconia nanoparticles. ACS Omega 5(4), 1987–1996 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. S.Q. Liu, C. Wang, J. Hou, P.F. Wang, L.Z. Miao, T.F. Li, Effects of silver sulfide nanoparticles on the microbial community structure and biological activity of freshwater biofilms. Environ. Sci. Nano 5(12), 2899–2908 (2018)

    Article  CAS  Google Scholar 

  69. C. Malarkodi, S. Rajeshkumar, K. Paulkumar, M. Vanaja, G. Gnanajobitha, G. Annadurai, Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg. Chem. Appl. 2014, 1–10 (2014)

    Article  Google Scholar 

  70. L. Argueta-Figueroa, N. Torres-Gomez, R. Garcia-Contreras, A.R. Vilchis-Nestor, O. Martinez-Alvarez, L.S. Acosta-Torres, M.C. Arenas-Arrocena, Hydrothermal synthesis of pyrrhotite (Fex-1S) nanoplates and their antibacterial, cytotoxic activity study. Prog. Nat. Sci.-Mater. 28(4), 447–455 (2018)

    Article  CAS  Google Scholar 

  71. V. Andre, A.R.F. da Silva, A. Fernandes, R. Frade, C. Garcia, P. Rijo, A.M.M. Antunes, J. Rocha, M.T. Duarte, Mg- and Mn-MOFs boost the antibiotic activity of nalidixic acid. Acs Appl. Bio Mater. 2(6), 2347–2354 (2019)

    Article  CAS  PubMed  Google Scholar 

  72. J.H. Jo, H.C. Kim, S. Huh, Y. Kim, D.N. Lee, Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands. Dalton Trans. 48(23), 8084–8093 (2019)

    Article  CAS  PubMed  Google Scholar 

  73. V. Pezeshkpour, S.A. Khosravani, M. Ghaedi, K. Dashtian, F. Zare, A. Sharifi, R. Jannesar, M. Zoladl, Ultrasound assisted extraction of phenolic acids from broccoli vegetable and using sonochemistry for preparation of MOF-5 nanocubes: comparative study based on micro-dilution broth and plate count method for synergism antibacterial effect. Ultrason. Sonochem. 40(Pt A), 1031–1038 (2018)

    Article  CAS  PubMed  Google Scholar 

  74. W.J. Zhuang, D.Q. Yuan, J.R. Li, Z.P. Luo, H.C. Zhou, S. Bashir, J.B. Liu, Highly potent bactericidal activity of porous metal-organic frameworks. Adv. Healthc. Mater. 1(2), 225–238 (2012)

    Article  CAS  PubMed  Google Scholar 

  75. D.M.D. Formaggio, X.A.D. Neto, L.D.A. Rodrigues, V.M. de Andrade, B.C. Nunes, M. Lopes-Ferreira, F.G. Ferreira, C.C. Wachesk, E.R. Camargo, K. Conceicao, D.B. Tada, In vivo toxicity and antimicrobial activity of AuPt bimetallic nanoparticles. J. Nanopart. Res. 21(11), 1–16 (2019)

    Article  Google Scholar 

  76. A.S. Lozhkomoev, M.I. Lerner, A.V. Pervikov, S.O. Kazantsev, A.N. Fomenko, Development of Fe/Cu and Fe/Ag bimetallic nanoparticles for promising biodegradable materials with antimicrobial effect. Nanotechnol. Russ. 13(1–2), 18–25 (2018)

    Article  CAS  Google Scholar 

  77. S. Singh, K.C. Barick, D. Bahadur, Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4–ZnO nanocomposite. Powder Technol. 269, 513–519 (2015)

    Article  CAS  Google Scholar 

  78. M.M. Masadeh, G.A. Karasneh, M.A. Al-Akhras, B.A. Albiss, K.M. Aljarah, S.I. Al-Azzam, K.H. Alzoubi, Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 67(3), 427–435 (2015)

    Article  CAS  PubMed  Google Scholar 

  79. K.E. Alzahrani, A.A. Niazy, A.M. Alswieleh, R. Wahab, A.M. El-Toni, H.S. Alghamdi, Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles. Int. J. Nanomed. 13, 77–87 (2018)

    Article  CAS  Google Scholar 

  80. N. Yadav, A.K. Jaiswal, K.K. Dey, V.B. Yadav, G. Nath, A.K. Srivastava, R.R. Yadav, Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response. Mater. Chem. Phys. 218, 10–17 (2018)

    Article  CAS  Google Scholar 

  81. D. Paul, S. Mangla, S. Neogi, Antibacterial study of CuO-NiO-ZnO trimetallic oxide nanoparticle. Mater. Lett. 271, 127740 (2020)

    Article  CAS  Google Scholar 

  82. A. Gupta, N. Khosla, V. Govindasamy, A. Saini, K. Annapurna, S.R. Dhakate, Trimetallic composite nanofibers for antibacterial and photocatalytic dye degradation of mixed dye water. Appl. Nanosci. 10(11), 4191–4205 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. M.A. Huq, Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int. J. Mol. Sci. 21(4), 1510 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. A. Deljou, S. Goudarzi, Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus Sp AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iran. J. Biotechnol. 14(2), 25–32 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  85. N. Abdel-Raouf, N.M. Al-Enazi, I.B.M. Ibraheem, Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem. 10, S3029–S3039 (2017)

    Article  CAS  Google Scholar 

  86. A. Fouda, A.M. Eid, E. Guibal, M.F. Hamza, H.S. El-Din, D.H.M. Alkhalifah, D. El-Hossary, Green synthesis of gold nanoparticles by aqueous extract of zingiber officinale: characterization and insight into antimicrobial, antioxidant, and in vitro cytotoxic activities. Appl Sci-Basel 12(24), 12879 (2022)

    Article  CAS  Google Scholar 

  87. I. Jahan, F. Erci, I. Isildak, Facile microwave-mediated green synthesis of non-toxic copper nanoparticles using Citrus sinensis aqueous fruit extract and their antibacterial potentials. J. Drug Deliv. Sci. Techol. 61, 102172 (2021)

    Article  CAS  Google Scholar 

  88. S.M.H. Akhter, F. Mohammad, S. Ahmad, Terminalia belerica mediated green synthesis of nanoparticles of copper, iron and zinc metal oxides as the alternate antibacterial agents against some common pathogens. Bionanoscience 9(2), 365–372 (2019)

    Article  Google Scholar 

  89. S.M.H. Akhter, Z. Mahmood, S. Ahmad, F. Mohammad, Plant-mediated green synthesis of zinc oxide nanoparticles using Swertia chirayita leaf extract, characterization and its antibacterial efficacy against some common pathogenic bacteria. Bionanoscience 8(3), 811–817 (2018)

    Article  Google Scholar 

  90. Y.Y. Zhao, C.J. Ye, W.W. Liu, R. Chen, X.Y. Jiang, Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew. Chem. Int. Edit. 53(31), 8127–8131 (2014)

    Article  CAS  Google Scholar 

  91. M. Amina, N.M. Al Musayeib, N.A. Alarfaj, M.F. El-Tohamy, G.A. Al-Hamoud, Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomaterials Basel 10(12), 2453 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. S. Anjum, K. Nawaz, B. Ahmad, C. Hano, B.H. Abbasi, Green synthesis of biocompatible core-shell (Au–Ag) and hybrid (Au–ZnO and Ag–ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Adv. 12(37), 23845–23859 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. N.R. Khalid, M. Sabir, F. Ali, M.B. Tahir, M.A. Javid, N.A. Niaz, R. Ahmed, M. Rafique, M. Imran, M.A. Assiri, Green synthesis and characterizations of bi-functional Mo-doped ZnO nanostructures for antimicrobial and photocatalytic applications. Mater. Chem. Phys. 296, 127306 (2023)

    Article  CAS  Google Scholar 

  94. H.V. Tien, N. Tri, N.P. Anh, D.M. Nhi, L.T.B. Hang, D.N. Linh, N.V. Minh, Characterization and antibacterial activity of silver-manganese bimetallic nanoparticles biofabricated using arachis pintoi extract. Int. J. Pharm. Phytopha 10(1), 70–76 (2020)

    Google Scholar 

  95. M.M. Ahmad, H.M. Kotb, S. Mushtaq, M. Waheed-Ur-Rehman, C.M. Maghanga, M.W. Alam, Green synthesis of Mn plus Cu bimetallic nanoparticles using vinca rosea extract and their antioxidant, antibacterial, and catalytic activities. Crystals 12(1), 72 (2022)

    Article  CAS  Google Scholar 

  96. S. Hussein, A.M. Mahmoud, H.A. Elgebaly, O.M. Hendawy, E.H.M. Hassanein, S.M.N. Moustafa, N.F. Alotaibi, A.M. Nassar, Green synthesis of trimetallic nanocomposite (Ru/Ag/Pd)-Np and its in vitro antimicrobial and anticancer activities. J. Chem. NY 2022, 1–14 (2022)

    Article  Google Scholar 

  97. I. Zgura, N. Badea, M. Enculescu, V.A. Maraloiu, C. Ungureanu, M.E. Barbinta-Patrascu, Burdock-derived composites based on biogenic gold, silver chloride and zinc oxide particles as green multifunctional platforms for biomedical applications and environmental protection. Materials 16(3), 1153 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. N. Yadav et al., Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response. Mater. Chem. Phys. 218, 10–17 (2018)

    Article  CAS  Google Scholar 

  99. S. Hussein et al., Green synthesis of trimetallic nanocomposite (Ru/Ag/Pd)-Np and its in vitro antimicrobial and anticancer activities. J. Chem. 2022, 1–14 (2022)

    Article  Google Scholar 

  100. W.R. Li, X.B. Xie, Q.S. Shi, S.S. Duan, Y.S. Ouyang, Y.B. Chen, "Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122 (2010)

    Article  CAS  PubMed  Google Scholar 

  101. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Yacaman, M. J., Mechanistic study of antibacterial activity of copper nanoparticles against multidrug-resistant Pseudomonas aeruginosa (2005)

  102. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., Kim, J. O., Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. (2000)

  103. Xie, Y., He, Y., Irwin, P. L., Jin, T., Shi, X., Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni (2011)

Download references

Acknowledgements

This work was supported at Government City College (A), Osmania University by the Department of Physics.

Funding

No funding was received for this project.

Author information

Authors and Affiliations

Authors

Contributions

PK, PM, SL, DA: visualization, literature review, and writing original draft. PK (corresponding author): project supervision and administration. All other authors were involved in various parts of discussion of the manuscript.

Corresponding author

Correspondence to Parvathalu Kalakonda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors have no relevant financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalakonda, P., Mandal, P., Laxmi Mynepally, S. et al. Comparison of Multi-metallic Nanoparticles-Alternative Antibacterial Agent: Understanding the Role of Their Antibacterial Properties. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-023-02960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02960-x

Keywords

Navigation