Skip to main content
Log in

Structural, Physical, Thermal, and Optical Analysis of Lead Modified Bismo–Borovanadate Glassy System: V2O5–B2O3–Bi2O3–PbO

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present study, lead-modified bismuth borovanadate glasses were synthesized using the conventional melt-quench technique, maintaining a fixed composition of (50 − x)V2O5–40B2O3–10Bi2O3–xPbO, where x ranged from 5 to 25 mol% in 5 mol% increments. To confirm the amorphous nature of the samples, X-ray diffraction was utilized. Several physical properties, including density (ρg) (3.55 to 4.41 g/cm3), molar volume (Vm) (47.21 to 39.83 cm3/mol), crystalline volume (Vc) (42.09 to 35.94 cm3/mol), and oxygen packing density (OPD) (80.49 to 75.32 g-atom/l), were examined and found to exhibit composition-dependent variations. Additionally, various other parameters were determined, including interionic distance (Ri) (1.16 to 0.65 cm−1), lead yield field (F) (0.38 to 1.21 cm−2), concentrations of Pb2+ ions (N) (ranging from 0.64 to 3.78 ions/cm3), and Polaron radius (Rp) (ranging from 4.68 to 2.60 cm−1). The analysis of DSC thermograms revealed a positive correlation between the concentration of lead oxide and the glass transition temperature (Tg), which varied from 254 to 295 ºC. This suggests an improvement in the thermal stability of the glass system with increasing lead oxide content. Structural investigations using infrared and Raman spectroscopy indicated that V2O5 served a dual role as a network former (with VO5 units) and as a modifier (with VO4 units). The presence of PbO and Bi2O3 as modifiers facilitated the transformation of BO3 units into BO4 units and the formation of diborovanadate ([B2V2O9]2−) groups and strong B–O–V linkages. The optical energy band gap (Eopt), determined through UV–visible spectroscopy, showed a consistent increase with the progressive incorporation of PbO. Both direct allowed (1.986 to 2.392 eV) and indirect allowed (1.582 to 2.087 eV) band gaps exhibited this rising trend. Furthermore, the prepared glasses demonstrated a high level of optical basicity (1.182 to 1.168), electronic polarizability (3.419 to 3.327) of oxide ions, third-order non-linear optical susceptibility (0.141 to 0.063 × 10–10 esu), and metallization criterion (0.281 to 0.323). These results suggest that the glasses prepared in this study have the potential for use in non-linear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Dussubieux, B. Gratuze, M. Blet-Lemarquand, Mineral soda alumina glass: occurrence and meaning. J. Archaeol. Sci. 37(7), 1646–1655 (2010)

    Article  Google Scholar 

  2. M. Asir, S. Arabia, Dark and photoconductivity of cadmium-vanadium-silver oxide glasses. J. Ovonic Res. 13, 315–323 (2017)

    Google Scholar 

  3. R.B. Rao, N. Veeraiah, Study on some physical properties of Li2O–MO–B2O3: V2O5 glasses. Physica B 348(1–4), 256–271 (2004)

    CAS  Google Scholar 

  4. A. Kaaouass, A. Ben Ali, H. Ait Ahsaine, G. Kaichouh, A. Zarrouk, M. Saadi, Photocatalytic properties and chemical durability of CaO–B2O3-V2O5 borovanadate glasses. Catalysts 13(3), 512 (2023)

    Article  CAS  Google Scholar 

  5. B.K. Sharma, D.C. Dube, A. Mansingh, Preparation and characterisation of V2O5-B2O3 glasses. J. Non-Cryst. Solids 65(1), 39–51 (1984). https://doi.org/10.1016/0022-3093(84)90353-3

    Article  CAS  Google Scholar 

  6. R. Viswanatha, M.V.S. Reddy, C.N. Reddy, R.S. Chakradhar, Infrared and MAS NMR studies of potassium borovanadate glasses. J. Mol. Struct. 889(1–3), 197–203 (2008). https://doi.org/10.1016/j.molstruc.2008.02.003

    Article  CAS  Google Scholar 

  7. B.K. Chethana, C.N. Reddy, K.J. Rao, Thermo–physical and structural studies of sodium zinc borovanadate glasses in the region of high concentration of modifier oxides. Mater. Res. Bull. 47(7), 1810–1820 (2012). https://doi.org/10.1016/j.materresbull.2012.03.022

    Article  CAS  Google Scholar 

  8. S. Sailaja, C.N. Raju, C.A. Reddy, B.D.P. Raju, Y.D. Jho, B.S. Reddy, Optical properties of Sm3+-doped cadmium bismuth borate glasses. J. Mol. Struct. 1038, 29–34 (2013). https://doi.org/10.1016/j.molstruc.2013.01.052

    Article  CAS  Google Scholar 

  9. M. Farouk, A. Samir, F. Metawe, M. Elokr, Optical absorption and structural studies of bismuth borate glasses containing Er3+ ions. J. Non-Cryst. Solids 371, 14–21 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.04.001

    Article  CAS  Google Scholar 

  10. K.V. Ramesh, D.L. Sastry, IR and ESR studies of CuO substituted for PbO in eutectic lead vanadate glass system. J. Non-Cryst. Solids 352(50–51), 5421–5428 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.08.017

    Article  CAS  Google Scholar 

  11. R.A. Montani, M. Levy, J.L. Souquet, An electrothermal model for high-field conduction and switching phenomena in TeO2-V2O5 glasses. J. Non-Cryst. Solids 149(3), 249–256 (1992). https://doi.org/10.1016/0022-3093(92)90073-S

    Article  CAS  Google Scholar 

  12. Y.B. Saddeek, E.R. Shaaban, K.A. Aly, I.M. Sayed, Characterization of some lead vanadate glasses. J. Alloys Compd. 478(1–2), 447–452 (2009). https://doi.org/10.1016/j.jallcom.2008.11.063

    Article  CAS  Google Scholar 

  13. A. Ghosh, S. Bhattacharya, A. Ghosh, Optical and other structural properties of some zinc vanadate semiconducting glasses. J. Alloys Compd. 490(1–2), 480–483 (2010)

    Article  CAS  Google Scholar 

  14. K. Bagchi, C. Deng, C. Bishop, Y. Li, N.E. Jackson, L. Yu, M.D. Ediger, Over what length scale does an inorganic substrate perturb the structure of a glassy organic semiconductor. ACS Appl. Mater. Interfaces 12(23), 26717–26726 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. A.E. Owen, Semiconducting glasses part II: properties and interpretation. Contemp. Phys. 11(3), 257–286 (1970)

    Article  CAS  Google Scholar 

  16. M.H.A. Mhareb, M.A. Morsy, H. Almarri, M.I. Sayyed, I. Alrammah, N. Alonizan, M.A. Almessiere, Gamma-ray induced effect on the structural and optical properties and durability of neodymium-doped zinc–bismuth–borotellurite glasses and glass ceramics. Opt. Mater. 137, 113572 (2023). https://doi.org/10.1016/j.optmat.2023.113572

    Article  CAS  Google Scholar 

  17. U.G. Issever, G.Ö.K.H.A.N. Kilic, E.R.K.A.N. Ilik, The Impact of CuO on physical, structural, optical and thermal properties of dark VPB semiconducting glasses. Opt. Mater. 116, 111084 (2021). https://doi.org/10.1016/j.optmat.2021.111084

    Article  CAS  Google Scholar 

  18. S.K. Arya, S.S. Danewalia, M. Arora, K. Singh, Effect of variable oxidation states of vanadium on the structural, optical, and dielectric properties of B2O3–Li2O–ZnO–V2O5 glasses. J. Phys. Chem. B 120(47), 12168–12176 (2016). https://doi.org/10.1021/acs.jpcb.6b08285

    Article  CAS  PubMed  Google Scholar 

  19. P. Pascuta, Structural investigations of some bismuth–borate–vanadate glasses doped with gadolinium ions. J. Mater. Sci. Mater. Electron. 21, 338–342 (2010)

    Article  CAS  Google Scholar 

  20. B.N. Meera, J. Ramakrishna, Raman spectral studies of borate glasses. J. Non-Cryst. Solids 159(1–2), 1–21 (1993). https://doi.org/10.1016/0022-3093(93)91277-A

    Article  CAS  Google Scholar 

  21. C.N. Reddy, V.V. Gowda, R.S. Chakradhar, Elastic properties and structural studies on lead–boro–vanadate glasses. J. Non-Cryst. Solids 354(1), 32–40 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.07.011

    Article  CAS  Google Scholar 

  22. A.E. Ersundu, M. Çelikbilek, M. Baazouzi, M.T. Soltani, J. Troles, S. Aydin, Characterization of new Sb2O3–based multicomponent heavy metal oxide glasses. J. Alloys Compd. 615, 712–718 (2014). https://doi.org/10.1016/j.jallcom.2014.07.024

    Article  CAS  Google Scholar 

  23. F.H. Margha, M.A. Marzouk, Influence of vanadium addition on the optical and photoluminescence properties of borate glasses and their glass–ceramic derivatives. Appl. Phys. A 125, 1–9 (2019)

    Article  CAS  Google Scholar 

  24. D. Souri, Physical and thermal characterization and glass stability criteria of amorphous silver-vanadate-tellurate system at different heating rates: Inducing critical Ag2O/V2O5 ratio. J. Non-Cryst. Solids 475, 136–143 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.09.008

    Article  CAS  Google Scholar 

  25. S.B. Kolavekar, N.H. Ayachit, Structural analysis on the basis of effect of molybdenum on the Pr2O3 doped lead borate glasses series-II. J. Phys. (2021). https://doi.org/10.1088/1742-6596/2070/1/012031

    Article  Google Scholar 

  26. S.B. Kolavekar, N.H. Ayachit, Impact of Pr2O3 on the physical and optical properties of multi-component borate glasses. Mater. Chem. Phys. 257, 123796 (2021). https://doi.org/10.1016/j.matchemphys.2020.123796

    Article  CAS  Google Scholar 

  27. K. Hanamar, B.G. Hegde, S.B. Kolavekar, N.H. Ayachit, A.G. Pramod, K. Keshavamurthy, R.F. Bhajantri, Physical, structural, and photoluminescence characteristics of Sm2O3 doped lithium zinc borate glasses bearing large concentrations of modifier. J. Inorg. Organomet. Polym. Mater. 1, 1–9 (2023)

    Google Scholar 

  28. S.B. Kolavekar, N.H. Ayachit, Impact of variation of TeO2 on the thermal properties of lead borate glasses doped with Pr2O3. Eur. Phys. J. Plus 137(4), 1–8 (2022)

    Article  Google Scholar 

  29. E.A. Mohamed, M.G. Moustafa, I. Kashif, Microstructure, thermal, optical and dielectric properties of new glass nanocomposites of SrTiO3 nanoparticles/clusters in tellurite glass matrix. J. Non-Cryst. Solids 482, 223–229 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.12.048

    Article  CAS  Google Scholar 

  30. G. Kilic, E.R.K.A.N. İlik, K.A. Mahmoud, F.I. El-Agawany, S. Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses. Appl. Phys. A 127, 1–16 (2021)

    Article  Google Scholar 

  31. P. Kaur, P. Kaur, J.S. Alzahrani, M.S. Al–Buriahi, T. Singh, Physical, structural and radiation absorption characteristics for some Eu3+ doped heavy metal oxide phosphate glasses. Optik 264, 169432 (2022). https://doi.org/10.1016/j.ijleo.2022.169432

    Article  CAS  Google Scholar 

  32. E.M. Abou Hussein, T.D. Abd Elaziz, N.A. El-Alaily, Effect of gamma radiation on some optical and electrical properties of lithium bismuth silicate glasses. J. Mater. Sci. Mater. Electron. 30, 12054–12064 (2019)

    Article  CAS  Google Scholar 

  33. S.H. Alazoumi, S.A. Aziz, R. El-Mallawany, U.S.A. Aliyu, H.M. Kamari, M.H.M.M. Zaid, A. Ushah et al., Optical properties of zinc lead tellurite glasses. Results Phys. 9, 1371–1376 (2018). https://doi.org/10.1016/j.rinp.2018.04.041

    Article  Google Scholar 

  34. S.A. Umar, M.K. Halimah, K.T. Chan, A.A. Latif, Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. J. Non-Cryst. Solids 471, 101–109 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.018

    Article  CAS  Google Scholar 

  35. M.S. Gaafar, S.Y. Marzouk, I.S. Mahmoud, M.B. Henda, M. Afifi, A.M. Abd El-Aziz, M. Alhabradi, Role of neodymium on some acoustic and physical properties of Bi2O3–B2O3-SrO glasses. J. Market. Res. 9(4), 7252–7261 (2020). https://doi.org/10.1016/j.jmrt.2020.04.086

    Article  CAS  Google Scholar 

  36. J. Sauer, J. Döbler, Structure and reactivity of V2O5: bulk solid, nanosized clusters, species supported on silica and alumina, cluster cations and anions. Dalton Trans. 19, 3116–3121 (2004)

    Article  Google Scholar 

  37. N. Palanivelu, V. Rajendran, Dependence of elastic properties and ultrasonic velocities on the structure of vanadate lead tellurite glasses. Phys. Status Solidi 203(10), 2347–2355 (2006). https://doi.org/10.1002/pssa.200622160

    Article  CAS  Google Scholar 

  38. Y. Gao, J.J. Ma, Y. Chen, M.H. Wang, Effect of Bi2O3 on the structure and thermal properties of Bi2O3-SiO2–B2O3 glasses prepared by sol-gel method. J. Sol-Gel Sci. Technol. 103(3), 713–721 (2022)

    Article  CAS  Google Scholar 

  39. Q. Tong, S. Liu, J. Huo, X. Zhang, H. Liu, K. Zheng, Y. Zhu, Structure, crystallization behavior and chemical stability analysis of Nd3+–basaltic glasses for immobilizing simulated trivalent actinides. J. Nucl. Mater. 574, 154194–154199 (2023). https://doi.org/10.1016/j.jnucmat.2022.154194

    Article  CAS  Google Scholar 

  40. M. Fidan, A. Acikgoz, G. Demircan, D. Yilmaz, B. Aktas, Optical, structural, physical, and nuclear shielding properties, and albedo parameters of TeO2–BaO–B2O3–PbO–V2O5 glasses. J. Phys. Chem. Solids 163, 110543 (2022). https://doi.org/10.1016/j.jpcs.2021.110543

    Article  CAS  Google Scholar 

  41. B. Karthikeyan, S. Mohan, Structural, optical and glass transition studies on Nd3+-doped lead bismuth borate glasses. Physica B 334(3–4), 298–302 (2003). https://doi.org/10.1016/S0921-4526(03)00080-2

    Article  CAS  Google Scholar 

  42. P.T. Rao, B. Vasundhara, Thermal and FT-IR properties of semiconducting SnO2–PbO–V2O5 glass system. New J. Glass Ceram. 5(03), 53 (2015). https://doi.org/10.4236/njgc.2015.53007

    Article  CAS  Google Scholar 

  43. S.G. Motke, S.P. Yawale, S.S. Yawale, Infrared spectra of zinc doped lead borate glasses. Bull. Mater. Sci. 25, 75–78 (2002)

    Article  CAS  Google Scholar 

  44. A. Mekki, G.D. Khattak, L.E. Wenger, Structure and magnetic properties of lead vanadate glasses. J. Non-Cryst. Solids 330(1–3), 156–167 (2003). https://doi.org/10.1016/j.jnoncrysol.2003.08.039

    Article  CAS  Google Scholar 

  45. V. Dimitrov, Y. Dimitriev, Structure of glasses in PbO-V2O5 system. J. Non-Cryst. Solids 122(2), 133–138 (1990). https://doi.org/10.1016/0022-3093(90)91058-Y

    Article  CAS  Google Scholar 

  46. S. Laila, S.N. Supardan, A.K. Yahya, Effect of ZnO addition and concurrent reduction of V2O5 on network formation and elastic properties of lead vanadate (55–x) V2O5–45PbO–(x) ZnO glass system. J. Non-Cryst. Solids 367, 14–22 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.02.007

    Article  CAS  Google Scholar 

  47. S. Rada, M. Neumann, E. Culea, Experimental and theoretical investigations on the structure of the lead–vanadate–tellurate unconventional glasses. Solid State Ionics 181(25–26), 1164–1169 (2010). https://doi.org/10.1016/j.ssi.2010.06.038

    Article  CAS  Google Scholar 

  48. I. Ardelean, S. Cora, FT-IR, Raman and UV–VIS spectroscopic studies of copper doped 3Bi2O3-B2O3 glass matrix. J. Mater. Sci. Mater. Electron. 19, 584–588 (2008)

    Article  CAS  Google Scholar 

  49. D.K. Kanchan, H.R. Panchal, Infrared absorption study of potassium–boro-vanadate-iron glasses. Turk. J. Phys. 22(10), 989–996 (1998)

    CAS  Google Scholar 

  50. R. Boda, M.D. Shareefuddin, M.N. Chary, R. Sayanna, FTIR and optical properties of europium doped lithium zinc bismuth borate glasses. Mater. Today 3(6), 1914–1922 (2016). https://doi.org/10.1016/j.matpr.2016.04.092

    Article  Google Scholar 

  51. A. Edukondalu, S. Rahman, S.K. Ahmmad, A. Gupta, K.S. Kumar, Optical properties of amorphous Li2O–WO3–B2O3 thin films deposited by electron beam evaporation. J. Taibah Univ. Sci. 10(3), 363–368 (2016). https://doi.org/10.1016/j.jtusci.2015.03.012

    Article  Google Scholar 

  52. A.M. Zahra, C.Y. Zahra, B. Piriou, DSC and Raman studies of lead borate and lead silicate glasses. J. Non-Cryst. Solids 155(1), 45–55 (1993). https://doi.org/10.1016/0022-3093(93)90470-I

    Article  CAS  Google Scholar 

  53. A.A. Kharlamov, R.M. Almeida, J. Heo, Vibrational spectra and structure of heavy metal oxide glasses. J. Non-Cryst. Solids 202(3), 233–240 (1996). https://doi.org/10.1016/0022-3093(96)00192-5

    Article  CAS  Google Scholar 

  54. S. Barbi, C. Mugoni, M. Montorsi, M. Affatigato, C. Gatto, C. Siligardi, Structural and optical properties of rare-earths doped barium bismuth borate glasses. J. Non-Cryst. Solids 481, 239–247 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.043

    Article  CAS  Google Scholar 

  55. H. Li, H. Lin, W. Chen, L. Luo, IR and Raman investigation on the structure of (100–x)[0.33 B2O3–0.67 ZnO]–xV2O5 glasses. J. Non-Cryst. Solids 352(28–29), 3069–3073 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.03.073

    Article  CAS  Google Scholar 

  56. A. Kaaouass, A.B. Ali, F. Alloun, A. Zarrouk, M. Saadi, Structural, thermal and physical properties of the calcium borovanadate glasses belonging to the 40CaO-(60–x) B2O3-xV2O5 system (Appl. Chem, Biointerface Res, 2022). https://doi.org/10.33263/BRIAC131.048

    Book  Google Scholar 

  57. O. Attos, M. Massot, M. Balkanski, E. Haro–Poniatowski, M. Asomoza, Structure of borovandate glasses studied by Raman spectroscopy. J. Non-Cryst. Solids 210(2–3), 163–170 (1997). https://doi.org/10.1016/S0022-3093(96)00596-0

    Article  CAS  Google Scholar 

  58. T. Hübert, G. Mosel, K. Witke, Structural elements in borovanadate glasses. Glass Phys. Chem. 27, 114–120 (2001)

    Article  Google Scholar 

  59. L. Baia, R. Stefan, W. Kiefer, S. Simon, Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content. J. Raman Spectrosc. 36(3), 262–266 (2005). https://doi.org/10.1002/jrs.1306

    Article  CAS  Google Scholar 

  60. D. Maniu, T. Iliescu, S. AùTILEAN, Raman study of lead vanadates glasses. Rom. Rep 56(3), 419–423 (2004)

    Google Scholar 

  61. S. Ibrahim, H.A. Abo-Mosallam, E.A. Mahdy, G.M. Turky, Impact of high NiO content on the structural, optical, and dielectric properties of calcium lithium silicate glasses. J. Mater. Sci. Mater. Electron. 33(13), 10596–10610 (2022)

    Article  CAS  Google Scholar 

  62. A. Rani, R. Parmar, R.S. Kundu, Structural, physical and optical study of calcium modified bismuth borovanadate glasses: V2O5–B2O3–Bi2O3-CaO. Opt. Mater. 143, 114135 (2023). https://doi.org/10.1016/j.optmat.2023.114135

    Article  CAS  Google Scholar 

  63. M.G. Moustafa, A. Shreif, S. Ghalab, Towards superior optical and dielectric properties of borosilicate glasses containing tungsten and vanadium ions. Mater. Chem. Phys. 254, 123464 (2020). https://doi.org/10.1016/j.matchemphys.2020.123464

    Article  CAS  Google Scholar 

  64. N. Elkhoshkhany, A. Reda, A.M. Embaby, Preparation and study of optical, thermal, and antibacterial properties of vanadate–tellurite glass. Ceram. Int. 43(17), 15635–15644 (2017). https://doi.org/10.1016/j.ceramint.2017.08.120

    Article  CAS  Google Scholar 

  65. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid-State Chem. 163(1), 100–112 (2002). https://doi.org/10.1006/jssc.2001.9378

    Article  CAS  Google Scholar 

  66. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  67. S.N. Nazrin, M.K. Halimah, F.D. Muhammad, J.S. Yip, L. Hasnimulyati, M.F. Faznny, I. Zaitizila, The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. J. Non-Cryst. Solids 490, 35–43 (2018)

    Article  CAS  Google Scholar 

  68. E. Kavaz, E.H. Ghanim, A.S. Abouhaswa, Optical, structural and nuclear radiation security properties of newly fabricated V2O5-SrO–PbO glass system. J. Non-Cryst. Solids 538, 120045 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120045

    Article  CAS  Google Scholar 

  69. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides I. J. Appl. Phys. 79(3), 1736–1740 (1996). https://doi.org/10.1063/1.360962

    Article  CAS  Google Scholar 

  70. S.A. Umar, M.K. Halimah, K.T. Chan, A.A. Latif, Physical, structural and optical properties of erbium doped rice husk silicate borotellurite (Er-doped RHSBT) glasses. J. Non-Cryst. Solids 472, 31–38 (2017)

    Article  CAS  Google Scholar 

  71. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Metall 45(3), 219–250 (2010)

    CAS  Google Scholar 

  72. M.K. Halimah, M.F. Faznny, M.N. Azlan, H.A.A. Sidek, Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results Phys. 7, 581–589 (2017). https://doi.org/10.1016/j.rinp.2017.01.014

    Article  Google Scholar 

  73. M.A. Algradee, A.B. Alwany, O.M. Samir, E.E. Saleh, T.M. El Sherbini, Structural, physical and optical properties of ZnO–V2O5–P2O5 glass system. J. Non-Cryst. Solids 589, 121664 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121664

    Article  CAS  Google Scholar 

  74. E.M. Ahmed, A.A. Elzelaky, N.A. El-Ghamaz, M.I. Youssif, Optical and structural properties of yttrium doped zinc lead borate glasses. Optik (2023). https://doi.org/10.1016/j.ijleo.2023.170542

    Article  Google Scholar 

  75. K.H. Sun, Fundamental condition of glass formation. J. Am. Ceram. Soc. 30(9), 277–281 (1947). https://doi.org/10.1111/j.1151-2916.1947.tb19654.x

    Article  CAS  Google Scholar 

  76. M. Bala, S. Pawaria, N. Deopa, S. Dahiya, A. Ohlan, R. Punia, A.S. Maan, Structural, optical, thermal and other physical properties of Bi2O3 modified lithium zinc silicate glasses. J. Mol. Struct. 1234, 130160 (2021). https://doi.org/10.1016/j.molstruc.2021.130160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors expresses sincere gratitude to the UGC-CSIR, New Delhi, for providing financial support in the form of JRF/SRF (Letter No. F.16-6 (DEC. 2018)/2019 (NET/CSIR)-Ref. 1275/(CSIR-UGC NET-DEC.2018) fellowship.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

AR-Methodology, conceptualization, data curation, data analysis, writing of original draft of manuscript, editing of manuscript; RP-methodology, resource, review and editing of the manuscript, supervision; RSK-resource.

Corresponding author

Correspondence to Rajesh Parmar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, A., Parmar, R. & Kundu, R.S. Structural, Physical, Thermal, and Optical Analysis of Lead Modified Bismo–Borovanadate Glassy System: V2O5–B2O3–Bi2O3–PbO. J Inorg Organomet Polym 34, 1589–1608 (2024). https://doi.org/10.1007/s10904-023-02896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02896-2

Keywords

Navigation