Skip to main content
Log in

Design, Preparation and Characterization of a High-Performance Epoxy Adhesive with Poly (Butylacrylate-block-styrene) Block Copolymer and Zirconia Nano Particles in Aluminum- Aluminum Bonded Joints

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Epoxy adhesives are one of the polymers used as high-performance matrix in adhesives. However, the high brittleness and low toughness of epoxy adhesives are critical challenges during their service in structural applications due to their high-crosslinking degree. The lack of appropriate high-temperature thermal stability is another drawback of these valuable materials. This study addressed the effect of hybrid reinforcement comprising zirconium oxide nanoparticles (NPs), phenolic resin (resol type), and poly (butyl acrylate-block-styrene) copolymer (BCP) on mechanical, adhesion, thermal, and morphological properties of the epoxy adhesive. Mechanical properties, thermal stability, and microstructure of the epoxy adhesive was assessed using tensile test, TGA, and FESEM tests, respectively. The adhesion features of the formulated adhesive were evaluated in lap joint bonding of an aluminum to aluminum. A new approach was developed to design advanced adhesives with high mechanical, adhesion, and thermal properties by adding hybrid additives. Based on the tensile test results, adding 5 phr of zirconium oxide nanoparticles to the epoxy adhesive increased the tensile strength, modulus, and the toughness of the dumbbell-shaped samples by 69, 33 and 175% compared to the neat epoxy adhesive, respectively. Furthermore, the sample containing 10 phr phenolic resin, 5 phr zirconia NPs, and 2.5 phr block copolymer exhibited the highest improvement (420%) in the shear strength in the single lap joint increment compared to pure epoxy, reflecting the synergistic impact of these compounds at the mentioned percentage. The TGA results indicated the highest initial degradation temperature in the sample containing 5 phr zirconia NPs which was 54.4 °C higher than that of the pure epoxy. The images of the fracture surface of the optimal samples in the tensile test showed the cavitation, shear band formation, crack deviation, and crack tip blunting as major mechanisms in the toughness enhancement of the samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. K.P. Unnikrishnan, E.T. Thachil, Toughening of epoxy resins. Des. Monomers Polym. 9(2), 129–152 (2006)

    CAS  Google Scholar 

  2. D. Ratna, A.K. Banthia, Rubber toughened epoxy. Macromol. Res. 12(1), 11–21 (2004)

    CAS  Google Scholar 

  3. E.M. Redline, C. Declet-Perez, F.S. Bates, L.F. Francis, Effect of block copolymer concentration and core composition on toughening epoxies. Polymer 55(16), 4172–4181 (2014)

    CAS  Google Scholar 

  4. J. Ma, M.S. Mo, X.S. Du, P. Rosso, K. Friedrich, H.C. Kuan, Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polymer 49(16), 3510–3523 (2008)

    CAS  Google Scholar 

  5. M. Jouyandeh, O. Moini Jazani, A.H. Navarchian, M.R. Saeb, High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints. J. Reinf. Plast. Compos. 35(23), 1685–1695 (2016)

    CAS  Google Scholar 

  6. Z. Abbasi, O.M. Jazani, M. Sohrabian, Designing of high-performance epoxy adhesive with recycled polymers and silica nano particles (SNPs) in epoxy/carbon fiber composite-steel bonded joints: mechanical properties, thermal stability and toughening mechanisms. J. Taiwan Inst. Chem. Eng. 123, 310–327 (2021)

    CAS  Google Scholar 

  7. M. Aliakbari, O.M. Jazani, M. Sohrabian, Epoxy adhesives toughened with waste tire powder, nanoclay, and phenolic resin for metal-polymer lap-joint applications. Prog. Org. Coat. 136, 105291 (2019)

    CAS  Google Scholar 

  8. M. Fallahi, O. Moini Jazani, P. Molla-Abbasi, Design and characterization of high-performance epoxy adhesive with block copolymer and alumina nanoparticles in aluminum-aluminum bonded joints: Mechanical properties, lap shear strength, and thermal stability. Polym. Compos. 43(3), 1637–1655 (2022)

    CAS  Google Scholar 

  9. Z.S. Pour, M. Ghaemy, Thermo-mechanical behaviors of epoxy resins reinforced with silane-epoxide functionalized α-Fe2O3 nanoparticles. Prog. Org. Coat. 77(8), 1316–1324 (2014)

    CAS  Google Scholar 

  10. S. Bayat, O.M. Jazani, P. Molla-Abbasi, M. Jouyandeh, M.R. Saeb, Thin films of epoxy adhesives containing recycled polymers and graphene oxide nanoflakes for metal/polymer composite interface. Prog. Org. Coat. 136, 105201 (2019)

    CAS  Google Scholar 

  11. F. Bondioli, V. Cannillo, E. Fabbri, M. Messori, Preparation and characterization of epoxy resins filled with submicron spherical zirconia particles. Polimery 51, 794–798 (2006)

    CAS  Google Scholar 

  12. S. Halder, P.K. Ghosh, M.S. Goyat, Influence of ultrasonic dual mode mixing on morphology and mechanical properties of ZrO2-epoxy nanocomposite. High Perform. Polym. 24(4), 331–341 (2012)

    CAS  Google Scholar 

  13. M.C. Brochier Salon, M.N. Belgacem, Hydrolysis-condensation kinetics of different silane coupling agents. Phosphorus Sulfur Silicon 186(2), 240–254 (2011)

    CAS  Google Scholar 

  14. H. Khosravi, R. Eslami-Farsani, Enhanced mechanical properties of unidirectional basalt fiber/epoxy composites using silane-modified Na+−montmorillonite nanoclay. Polym Test 55, 135–142 (2016)

    CAS  Google Scholar 

  15. H. Azizi, R. Eslami-Farsani, Study of mechanical properties of basalt fibers/epoxy composites containing silane-modified nanozirconia. J. Ind. Text. 51(4), 649–663 (2021)

    CAS  Google Scholar 

  16. R. Medina, F. Haupert, A.K. Schlarb, Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement. J. Mater. Sci. 43(9), 3245–3252 (2008)

    CAS  Google Scholar 

  17. X. Ma, C. Peng, D. Zhou, Z. Wu, S. Li, J. Wang, N. Sun, Synthesis and mechanical properties of the epoxy resin composites filled with sol−gel derived ZrO2 nanoparticles. J. Sol–Gel. Sci. Technol. 88(2), 442–453 (2018)

    CAS  Google Scholar 

  18. T. Gómez-del Río, A. Salazar, R.A. Pearson, J. Rodríguez, Fracture behaviour of epoxy nanocomposites modified with triblock copolymers and carbon nanotubes. Compos. B Eng. 87, 343–349 (2016)

    Google Scholar 

  19. P. Jojibabu, Y.X. Zhang, A.N. Rider, J. Wang, B.G. Prusty, Synergetic effects of carbon nanotubes and triblock copolymer on the lap shear strength of epoxy adhesive joints. Compos. B Eng. 178, 107457 (2019)

    CAS  Google Scholar 

  20. A.A.C. Silva, T.I. Gomes, B.D.P. Martins, R.B.R. Garcia, L.D.S. Cividanes, E.Y. Kawachi, New insights in adhesive properties of hybrid epoxy-silane coatings for aluminum substrates: effect of composition and preparation methods. J. Inorg. Organomet. Polym Mater. 30, 3105–3115 (2020)

    CAS  Google Scholar 

  21. Y. Bai, T.C. Nguyen, X.L. Zhao, R. Al-Mahaidi, Environment-assisted degradation of the bond between steel and carbon-fiber-reinforced polymer. J. Mater. Civ. Eng. 26(9), 04014054 (2014)

    Google Scholar 

  22. L. Ke, C. Li, J. He, S. Dong, C. Chen, Y. Jiao, Effects of elevated temperatures on mechanical behavior of epoxy adhesives and CFRP-steel hybrid joints. Compos. Struct. 235, 111789 (2020)

    Google Scholar 

  23. M.D. Banea, L.F. da Silva, The effect of temperature on the mechanical properties of adhesives for the automotive industry. Proc. Inst. Mech. Eng. Part L: J. Mater. Des App. 224(2), 51–62 (2010)

    Google Scholar 

  24. Y. Chen, Y. Wu, C. Geng, Z. Li, G. Dai, W. Cui, Curing kinetics and the properties of KH560-SiO 2/polyethersulfone/bismaleimide-phenolic epoxy resin composite. J. Inorg. Organomet. Polym Mater. 30, 1735–1743 (2020)

    CAS  Google Scholar 

  25. M.D. Banea, L.D. Silva, R.D.S.G. Campilho, Effect of temperature on tensile strength and mode I fracture toughness of a high temperature epoxy adhesive. J. Adhes. Sci. Technol. 26(7), 939–953 (2012)

    CAS  Google Scholar 

  26. J.P.B. de Souza, J.M.L.D. Reis, A thermomechanical and adhesion analysis of epoxy/Al2O3 nanocomposites. Nanomater. Nanotechnol. 5, 18 (2015)

    Google Scholar 

  27. F. Jamshaid, R.U. Khan, A. Islam, Performance improvement of glass fiber/epoxy composites upon integrating with N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane functionalized graphene oxide. J. Inorg. Organomet. Polym Mater. 31(9), 3810–3822 (2021)

    CAS  Google Scholar 

  28. G.M. Raja, A. Vasanthanathan, K. Jeyasubramanian, Novel ternary epoxy resin composites obtained by blending graphene oxide and polypropylene fillers: an avenue for the enhancement of mechanical characteristics. J. Inorg. Organomet. Polym Mater. 33(2), 383–397 (2023)

    CAS  Google Scholar 

  29. M. Aliakbari, O.M. Jazani, M. Sohrabian, M. Jouyandeh, M.R. Saeb, Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Prog. Org. Coat. 133, 376–386 (2019)

    CAS  Google Scholar 

  30. P. Zhou, L. Zou, S. Zha, A. Yang, S. Jiang, R. Guan, Compatibility and thermal decomposition behavior of acrylic block copolymer modified epoxy resin. J. Polym. Res. 27(1), 1–16 (2020)

    Google Scholar 

  31. F. Zhao, X. Fei, W. Wei, W. Ye, J. Luo, Y. Chen et al., A random acrylate copolymer with epoxy-amphiphilic structure as an efficient toughener for an epoxy/anhydride system. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44863

    Article  Google Scholar 

  32. L. Tao, Z. Sun, W. Min, H. Ou, L. Qi, M. Yu, Improving the toughness of thermosetting epoxy resins via blending triblock copolymers. RSC Adv. 10(3), 1603–1612 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. W. Naous, X.Y. Yu, Q.X. Zhang, K. Naito, Y. Kagawa, Morphology, tensile properties, and fracture toughness of epoxy/Al2O3 nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 44(10), 1466–1473 (2006)

    CAS  Google Scholar 

  34. M. Naeimirad, A. Zadhoush, R.E. Neisiany, Fabrication and characterization of silicon carbide/epoxy nanocomposite using silicon carbide nanowhisker and nanoparticle reinforcements. J. Compos. Mater. 50(4), 435–446 (2016)

    CAS  Google Scholar 

  35. H. Hu, L. Onyebueke, A. Abatan, Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J. Min. Mater. Characterization Eng. 9(04), 275 (2010)

    Google Scholar 

  36. M. Quaresimin, K. Schulte, M. Zappalorto, S. Chandrasekaran, Toughening mechanisms in polymer nanocomposites: from experiments to modelling. Compos. Sci. Technol. 123, 187–204 (2016)

    CAS  Google Scholar 

  37. A.M. Abd-Elnaiem, O.S. Salman, A. Hakamy, S.I. Hussein, Mechanical characteristics and thermal stability of hybrid epoxy and acrylic polymer coating/nanoclay of various thicknesses. J. Inorg. Organomet. Polym Mater. 32(6), 2094–2102 (2022)

    CAS  Google Scholar 

  38. A. Bajpai, S. Carlotti, The effect of hybridized carbon nanotubes, silica nanoparticles, and core-shell rubber on tensile, fracture mechanics and electrical properties of epoxy nanocomposites. Nanomaterials 9(7), 1057 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Wu, L. Lu, L. Yu, X. Yu, K. Naito, X. Qu, Q. Zhang, Preparation and characterization of epoxy/alumina nanocomposites. J. Nanosci. Nanotechnol. 20(5), 2964–2970 (2020)

    CAS  PubMed  Google Scholar 

  40. A. Sturiale, A. Vazquez, A. Cisilino, L.B. Manfredi, Enhancement of the adhesive joint strength of the epoxy–amine system via the addition of a resole-type phenolic resin. Int. J. Adhes. Adhes. 27(2), 156–164 (2007)

    CAS  Google Scholar 

  41. S. Khoee, N. Hassani, Adhesion strength improvement of epoxy resin reinforced with nanoelastomeric copolymer. Mater. Sci. Eng., A 527(24–25), 6562–6567 (2010)

    Google Scholar 

  42. V. Pang, Z.J. Thompson, G.D. Joly, F.S. Bates, L.F. Francis, Adhesion strength of block copolymer toughened epoxy on aluminum. ACS Appl. Polym. Mater. 2(2), 464–474 (2019)

    Google Scholar 

  43. L. Zhai, G. Ling, J. Li, Y. Wang, The effect of nanoparticles on the adhesion of epoxy adhesive. Mater. Lett. 60(25–26), 3031–3033 (2006)

    CAS  Google Scholar 

  44. S.K. Gupta, D.K. Shukla, D. Kaustubh Ravindra, Effect of nanoalumina in epoxy adhesive on lap shear strength and fracture toughness of aluminium joints. J. Adhes. 97(2), 117–139 (2021)

    CAS  Google Scholar 

  45. S.M.J. Razavi, M.R. Ayatollahi, A.N. Giv, H. Khoramishad, Single lap joints bonded with structural adhesives reinforced with a mixture of silica nanoparticles and multi walled carbon nanotubes. Int. J. Adhes. Adhes. 80, 76–86 (2018)

    CAS  Google Scholar 

  46. O. Chailee, T. Parnklang, P. Mora, T. Pothisiri, C. Jubsilp, S. Rimdusit, Epoxy-based composite adhesives with improved lap shear strengths at high temperatures for steel-steel bonded joints. J. Appl. Polym. Sci. 137(44), 49371 (2020)

    CAS  Google Scholar 

  47. P. Jojibabu, M. Jagannatham, P. Haridoss, G.J. Ram, A.P. Deshpande, S.R. Bakshi, Effect of different carbon nano-fillers on rheological properties and lap shear strength of epoxy adhesive joints. Compos. A Appl. Sci. Manuf. 82, 53–64 (2016)

    CAS  Google Scholar 

  48. F. Gholinezhad, R. Golhosseini, O. MoiniJazani, Synthesis, characterization, and properties of silicone grafted epoxy/acrylonitrile butadiene styrene/graphene oxide nanocomposite with high adhesion strength and thermal stability. Polym. Compos. 43, 1665–1684 (2022)

    CAS  Google Scholar 

  49. C.H. Chen, J.Y. Jian, F.S. Yen, Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos. A Appl. Sci. Manuf. 40(4), 463–468 (2009)

    Google Scholar 

  50. G.M.S.O. Viana, M. Costa, M.D. Banea, L.F.M. Da Silva, A review on the temperature and moisture degradation of adhesive joints. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. App. 231(5), 488–501 (2017)

    Google Scholar 

  51. H. Liu, Y. Fan, H. Peng, Effect of full temperature field environment on bonding strength of aluminum alloy. Crystals 11(6), 657 (2021)

    CAS  Google Scholar 

  52. L.D.R. Grant, R.D. Adams, L.F. da Silva, Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry. Int. J. Adhes. Adhes. 29(5), 535–542 (2009)

    CAS  Google Scholar 

  53. L.F. Da Silva, R.D. Adams, Adhesive joints at high and low temperatures using similar and dissimilar adherends and dual adhesives. Int. J. Adhes. Adhes. 27(3), 216–226 (2007)

    Google Scholar 

  54. H. Khoramishad, R.S. Ashofteh, M. Mobasheri, F. Berto, Temperature dependence of the shear strength in adhesively bonded joints reinforced with multi-walled carbon nanotubes. Eng. Fract. Mech. 199, 179–187 (2018)

    Google Scholar 

  55. E.A.S. Marques, L.F. Da Silva, M.D. Banea, R.J.C. Carbas, Adhesive joints for low-and high-temperature use: an overview. J. Adhes. 91(7), 556–585 (2015)

    CAS  Google Scholar 

  56. Z. Sun, L. Xu, Z. Chen, Y. Wang, R. Tusiime, C. Cheng et al., Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone. Polymers 11(3), 461 (2019)

    PubMed  PubMed Central  Google Scholar 

  57. A. Surendran, V.G. Geethamma, N. Kalarikkal, S. Thomas, Mechanical and thermal properties of epoxy/poly (styrene-co-acrylonitrile) (SAN)/organoclay nanocomposites. Macromol. Symposia 398(1), 2000184 (2021)

    CAS  Google Scholar 

  58. E.M. Petrie, Handbook of Adhesives and Sealants (McGraw-Hill Education, 2007)

    Google Scholar 

  59. Y. Wang, L. Chen, T. Xu, Y. Yan, J. Gu, J. Yun, J. Feng, High char yield novolac modified by Si-BNC precursor: thermal stability and structural evolution. Polym. Degrad. Stab. 137, 184–196 (2017)

    CAS  Google Scholar 

  60. M. Mansourian-Tabaei, S.H. Jafari, H.A. Khonakdar, A comparative study on the influence of nanoalumina and carbon nanotubes on thermal stability, adhesion strength and morphology of epoxy adhesives. Sci.Technol. 27(6), 361–369 (2015)

    Google Scholar 

  61. R. Aradhana, S. Mohanty, S.K. Nayak, High performance epoxy nanocomposite adhesive: effect of nanofillers on adhesive strength, curing and degradation kinetics. Int. J. Adhes. Adhes. 84, 238–249 (2018)

    CAS  Google Scholar 

  62. Z. Karami, M. Jouyandeh, J.A. Ali, M.R. Ganjali, M. Aghazadeh, S.M.R. Paran, M.R. Saeb, Epoxy/layered double hydroxide (LDH) nanocomposites: synthesis, characterization, and excellent cure feature of nitrate anion intercalated Zn-Al LDH. Progress Organ. Coat. 136, 105218 (2019)

    CAS  Google Scholar 

  63. Y. Chen, S. Zhou, H. Zou, M. Liang, Investigation of cure kinetics of epoxy resin/organic montmorillonite system by differential scanning calorimetry. Polym. Sci., Ser. B 56(5), 623–631 (2014)

    CAS  Google Scholar 

  64. P. Rosso, L. Ye, Epoxy/silica nanocomposites: nanoparticle-induced cure kinetics and microstructure. Macromol. Rapid Commun. 28(1), 121–126 (2007)

    CAS  Google Scholar 

  65. A. Dorigato, A. Pegoretti, F. Bondioli, M. Messori, Improving epoxy adhesives with zirconia nanoparticles. Compos. Interfaces 17(9), 873–892 (2010)

    CAS  Google Scholar 

  66. S. Maghsoudian, A. Salimi, M. Mirzataheri, The effect of nanoalumina silanisation in tetraglycidylether epoxy adhesive. Int. J. Adhes. Adhes. 92, 119–124 (2019)

    CAS  Google Scholar 

  67. K. Nakao, K. Yamanaka, The effect of modification of an epoxy resin adhesive with ATBN on peel strength. J. Adhes. 37(1–3), 15–31 (1992)

    CAS  Google Scholar 

  68. Q.H. Zeng, A.B. Yu, G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33(2), 191–269 (2008)

    CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

OMJ: Conceptualization, Methodology, Supervision, Writing–Review & Editing ,Visualization, MNV: Writing–Original Draft, Investigation, MS: Resources, Formal Analysis, Validation, ATP: Validation, Formal Analysis, MF: Visualization, Resources, Formal Analysis, Validation, Writing–Review & Editing.

Corresponding author

Correspondence to Omid Moini Jazani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikkhah Varkani, M., Moini Jazani, O., Sohrabian, M. et al. Design, Preparation and Characterization of a High-Performance Epoxy Adhesive with Poly (Butylacrylate-block-styrene) Block Copolymer and Zirconia Nano Particles in Aluminum- Aluminum Bonded Joints. J Inorg Organomet Polym 33, 3595–3616 (2023). https://doi.org/10.1007/s10904-023-02790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02790-x

Keywords

Navigation