Skip to main content
Log in

Co Doped Mg–Zn Spinel Nano-ferrites as a Sustainable Magnetic Nano-photo-catalyst with Reduced Recombination for Photo Degradation of Crystal Violet

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The widespread use of organic dyes that are discharged into wastewater from many sectors continues to be a top environmental issue today. The UV–Visible light driven photocatalytic environmental purification is a highly promising field, and spinel ferrites are the prime applicant for waste water purification. In this work, pure phase cobalt doped Mg–Zn nanoferrites with a composition of Mg0.5Zn0.4Co0.1Fe2O4, Mg0.4Zn0.5Co0.1Fe2O4, and Mg0.5Zn0.5Co0.1Fe1.9O4 were fabricated using economic and facile combustion process. The prepared catalysts were caharcteriazed for structural, optical and magnetic properties. The catalyst Z5C1 exhibits 97.76% crystal violet degradation in 90 min under UV–Visible light. The superior photocatalytic efficiency of the Z5C1 catalyst is attributed to the lowest charge carrier recombination rate and moderate band gap of the catalysts. The scavenging experiments revealed the role of holes as reactive species in the catalytic degradation of crystal violet dye. The reusability investigations and simplicity of magnetic separation of the manufactured catalyst show that catalysts have the potential to degrade crystal violet dye and other organic contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Fig. 12

Similar content being viewed by others

References

  1. M.I. Din, R. Khalid, Z. Hussain, Recent research on development and modification of nontoxic semiconductor for environmental application. Separ. Purific. Rev. (2020). https://doi.org/10.1080/15422119.2020.1714658

    Article  Google Scholar 

  2. B. Paul, B. Bhuyan, D.D. Purkayastha, M. Dey, S.S. Dhar, Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. Leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.02.054

    Article  Google Scholar 

  3. P. Dhiman, G. Rana, R.A. Alshgari, A. Kumar, G. Sharma, M. Naushad, Z.A. Alothman, Magnetic Ni–Zn ferrite anchored on g-C3N4 as nano-photocatalyst for efficient photo-degradation of doxycycline from water. Environ. Res. 216, 114665 (2023). https://doi.org/10.1016/j.envres.2022.114665

    Article  CAS  PubMed  Google Scholar 

  4. C.M. Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, N. Mongwaketsi, D. Letsholathebe, G. Mola, N. AbdullahAl-Dhabi, M.V. Arasu, M. Henini, Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/visible light induced removal of organic dye from urban wastewater. S Afr J Chem Eng, 26, 49–60 (2018). https://hdl.handle.net/10520/EJC-1476a49e43

  5. M. Ajaz, A. Rehman, Z. Khan, M.A. Nisar, S. Hussain, Degradation of azo dyes by Alcaligenes aquatilis 3c and its potential use in the wastewater treatment. AMB Express 9, 64 (2019). https://doi.org/10.1186/s13568-019-0788-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. K.H. Vardhan, P.S. Kumar, R.C. Panda, A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.111197

    Article  Google Scholar 

  7. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: a review. Environ. Pollut. (2019). https://doi.org/10.1016/j.envpol.2019.05.072

    Article  PubMed  PubMed Central  Google Scholar 

  8. A.R. Dinçer, Y. Güneş, N. Karakaya, E. Güneş, Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresour. Technol. 98, 4 (2007). https://doi.org/10.1016/j.biortech.2006.03.009

    Article  CAS  Google Scholar 

  9. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 3 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  10. T.P. Oliveira, G.N. Marques, M.A.M. Castro, R.C.V. Costa, J.H.G. Rangel, S.F. Rodrigues, C.C. dos Santos, M.M. Oliveira, Synthesis and photocatalytic investigation of ZnFe2O4 in the degradation of organic dyes under visible light. J. Mater. Res. Technol. 9, 6 (2020). https://doi.org/10.1016/j.jmrt.2020.10.080

    Article  CAS  Google Scholar 

  11. M.I. Din, S. Jabbar, J. Najeeb, R. Khalid, T. Ghaffar, M. Arshad, S.A. Khan, S. Ali, Green synthesis of zinc ferrite nanoparticles for photocatalysis of methylene blue. Int. J. Phytoremed. (2020). https://doi.org/10.1080/15226514.2020.1781783

    Article  Google Scholar 

  12. S. Latif, A. Liaqat, M. Imran, A. Javaid, N. Hussain, T. Jesionowski, M. Bilal, Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. Environ. Res. (2023). https://doi.org/10.1016/j.envres.2022.114500

    Article  PubMed  Google Scholar 

  13. Z. Wang, J. You, J. Li, J. Xu, X. Li, H. Zhang, Review on cobalt ferrite as photo-Fenton catalysts for degradation of organic wastewater. Catal. Sci. Technol. (2023). https://doi.org/10.1039/D2CY01300B

    Article  Google Scholar 

  14. A. Rahman, S. Zulfiqar, A.U. Haq, I.A. Alsafari, U.Y. Qazi, M.F. Warsi, M. Shahid, Cd–Gd-doped nickel spinel ferrite nanoparticles and their nanocomposites with reduced graphene oxide for catalysis and antibacterial activity studies. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.12.085

    Article  Google Scholar 

  15. Y. Sun, J. Zhou, D. Liu, X. Li, H. Liang, Enhanced catalytic performance of Cu-doped MnFe2O4 magnetic ferrites: tetracycline hydrochloride attacked by superoxide radicals efficiently in a strong alkaline environment. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2022.134154

    Article  PubMed  PubMed Central  Google Scholar 

  16. P. Shah, A. Unnarkat, F. Patel, M. Shah, P. Shah, A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation. Process Saf. Environ. Protect. (2022). https://doi.org/10.1016/j.psep.2022.03.030

    Article  Google Scholar 

  17. M. Sundararajan, L.J. Kennedy, P. Nithya, J.J. Vijaya, M. Bououdina, Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phys. Chem. Solids (2017). https://doi.org/10.1016/j.jpcs.2017.04.002

    Article  Google Scholar 

  18. P. Dhiman, N. Dhiman, A. Kumar, G. Sharma, M. Naushad, A.A. Ghfar, Solar active nano-Zn1−xMgxFe2O4 as a magnetically separable sustainable photocatalyst for degradation of sulfadiazine antibiotic. J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.111574

    Article  Google Scholar 

  19. S.F. Mansour, S. Wageh, R. Al-Wafi, M.A. Abdo, Enhanced magnetic, dielectric properties and photocatalytic activity of doped Mg–Zn ferrite nanoparticles by virtue of Sm3+ role. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.157437

    Article  Google Scholar 

  20. N. Khaliq, I. Bibi, F. Majid, M.I. Arshad, A. Ghafoor, Z. Nazeer, S. Ezzine, N. Alwadai, A. Nazir, M. Iqbal, Mg1−xNixFe2−xCrxO4 synthesis via hydrothermal route: effect of doping on the structural, optical, electrical, magnetic and photocatalytic properties. Results Phys. (2022). https://doi.org/10.1016/j.rinp.2022.106059

    Article  Google Scholar 

  21. R. Sharma, P. Thakur, M. Kumar, P. Sharma, V. Sharma, Nanomaterials for high frequency device and photocatalytic applications: Mg–Zn–Ni ferrites. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.02.287

    Article  Google Scholar 

  22. N.S. Al-Bassami, S.F. Mansour, AC conductivity, complex impedance and photocatalytic applications of Co2+ substituted Mg–Zn nanoferrite. Appl. Phys. A 127, 38 (2021). https://doi.org/10.1007/s00339-020-04022-2

    Article  CAS  Google Scholar 

  23. P. Dhiman, T. Mehta, A. Kumar, G. Sharma, M. Naushad, T. Ahamad, G.T. Mola, Mg0.5NixZn0.5−xFe2O4 spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of reactive Blue-19. Adv. Powder Technol. 31, 12 (2020). https://doi.org/10.1016/j.apt.2020.10.010

  24. S. Mansour, R. Al-Wafi, M. Abdo, Zn–Mg–La nanoferrites for storage and high frequency devices with augmenting the photocatalytic performance. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154125

    Article  Google Scholar 

  25. S. Kumari, N. Dhanda, A. Thakur, V. Gupta, S. Singh, R. Kumar, S. Hameed, P. Thakur, Nano Ca–Mg–Zn ferrites as tuneable photocatalyst for UV light-induced degradation of rhodamine B dye and antimicrobial behavior for water purification. Ceram. Int. 49, 8 (2023). https://doi.org/10.1016/j.ceramint.2022.12.107

    Article  CAS  Google Scholar 

  26. J. Zhao, T. Wang, X. Liu, X. Kan, C. Liu, W. Wang, Y. Li, J. Hu, Q. Lv, J. Huang, Influence of Mg2+ replacement on the structure and magnetic properties of MgxZn1−xFe2O4 (x = 0.1–0.5) ferrites. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-05143-3

  27. E. Petrova, D. Kotsikau, V. Pankov, A. Fahmi, Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn-ferrite nanopowders. J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2018.09.128

    Article  Google Scholar 

  28. A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S. Jaganathan, A. Baykal, P.S. Renganathan, Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.01.001

    Article  Google Scholar 

  29. S. Sugashini, T. Gomathi, R.A. Devi, P.N. Sudha, K. Rambabu, F. Banat, Nanochitosan/carboxymethyl cellulose/TiO2 biocomposite for visible-light-induced photocatalytic degradation of crystal violet dye. Environ. Res. (2022). https://doi.org/10.1016/j.envres.2021.112047

    Article  PubMed  Google Scholar 

  30. H.R. Sharma, K.M. Batoo, R. Neffati, P. Dhiman, S. Bhardwaj, P. Sharma, S. Hussain, I. Sharma, R. Goel, G. Kumar, Investigation of structural, electrical and magnetic properties of MnAlxFe2−xO4 ferrite nanoparticles processed by solution combustion route. Phys. B Condens. Matter 646, 414368 (2022). https://doi.org/10.1016/j.physb.2022.414368

    Article  CAS  Google Scholar 

  31. P. Dhiman, G. Rana, E.A. Dawi, A. Kumar, G. Sharma, A. Kumar, J. Sharma, Tuning the photocatalytic performance of Ni–Zn ferrite catalyst using Nd doping for solar light-driven catalytic degradation of methylene blue. Water 15, 1 (2023). https://doi.org/10.3390/w15010187

    Article  CAS  Google Scholar 

  32. P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, T.S. AlGarni, M. Naushad, Z.A. Alothman, Nanostructured magnetic inverse spinel Ni–Zn ferrite as environmental friendly visible light driven photo-degradation of levofloxacin. Chem. Eng. Res. Des. (2021). https://doi.org/10.1016/j.cherd.2021.08.028

    Article  Google Scholar 

  33. M. Basak, M.L. Rahman, M.F. Ahmed, B. Biswas, N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye–Scherrer, Williamson–Hall, Halder–Wagner and size-strain plot: different precipitating agent approach. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162694

    Article  Google Scholar 

  34. M. Amer, O. Hemeda, 57Fe Mössbauer and infrared studies of the system Co1−xCdxFe2O4. Hyperfine Interact. (1995). https://doi.org/10.1007/BF02066276

    Article  Google Scholar 

  35. S. Kanagesan, M. Hashim, S. Tamilselvan, N.B. Alitheen, I. Ismail, G. Bahmanrokh, Cytotoxic effect of nanocrystalline MgFe2O4 particles for cancer cure. J. Nanomater. (2013). https://doi.org/10.1155/2013/865024

    Article  Google Scholar 

  36. J. Hammouche, M. Gaidi, S. Columbus, M. Omari, Enhanced photocatalytic performance of zinc ferrite nanocomposites for degrading methylene blue: effect of nickel doping concentration. J. Inorgan. Organ. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-01960-z

    Article  Google Scholar 

  37. A. Irshad, M. Zulfiqar, H.M. Ali, N. Shahzadi, H.H. Abd El-Gawad, C. Chokejaroenrat, C. Sakulthaew, F. Anjum, M. Suleman, Co-substituted Mg–Zn spinel nanocrystalline ferrites: synthesis, characterization and evaluation of catalytic degradation efficiency for colored and colorless compounds. Ceram. Int. 48, 29805–29815 (2022)

  38. M.I.U. Haq, A.U. Rehman, M. Asghar, M.A.U. Nabi, N. Amin, S. Tahir, M.I. Arshad, Influence of Ce3+ and La3+ substitution on structural and optical parameters and electrical behavior on Mg–Zn ferrites synthesized via Co-precipitation method. J. Superconduct. Novel Magn. (2022). https://doi.org/10.1007/s10948-021-06124-1

    Article  Google Scholar 

  39. M.A. Rahman, M.T. Islam, M.S.J. Singh, M. Samsuzzaman, M.E.H. Chowdhury, Synthesis and characterization of Mg–Zn ferrite based flexible microwave composites and its application as SNG metamaterial. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-87100-6

    Article  PubMed  PubMed Central  Google Scholar 

  40. S. Kossar, I.S. Banu, N. Aman, R. Amiruddin, Investigation on photocatalytic degradation of crystal violet dye using bismuth ferrite nanoparticles. J. Dispers. Sci. Technol. (2021). https://doi.org/10.1080/01932691.2020.1806861

  41. G. Muhiuddin, I. Bibi, Z. Nazeer, F. Majid, S. Kamal, A. Kausar, Q. Raza, N. Alwadai, S. Ezzine, M. Iqbal, Synthesis of Ni doped barium hexaferrite by microemulsion route to enhance the visible light-driven photocatalytic degradation of crystal violet dye. Ceram. Int. 49, 3 (2023). https://doi.org/10.1016/j.ceramint.2022.09.319

    Article  CAS  Google Scholar 

  42. I. Bibi, F. Majid, S. Kamal, K. Jilani, B. Taj, Z. Nazeer, M. Iqbal, Enhanced visible light-driven photocatalytic degradation of crystal violet dye using Cr doped BaFe12O19 prepared via facile micro-emulsion route. J. Saudi Chem. Soc. 26, 6 (2022). https://doi.org/10.1016/j.jscs.2022.101533

    Article  CAS  Google Scholar 

  43. A. Jamil, Cu2+ doped nickel spinel ferrites (CuxNi1−xFe2O4) nanoparticles loaded on CNTs for degradation of crystal violet dye and antibacterial activity studies. J. Taibah Univ. Sci. (2021). https://doi.org/10.1080/16583655.2021.2005911

    Article  Google Scholar 

  44. J. Arshad, F.M.A. Alzahrani, S. Munir, U. Younis, M.S. Al-Buriahi, Z.A. Alrowaili, M.F. Warsi, Integration of 2D graphene oxide sheets with MgFe2O4/ZnO heterojunction for improved photocatalytic degradation of organic dyes and benzoic acid. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.03.024

    Article  Google Scholar 

  45. M.M. Baig, S. Zulfiqar, M.A. Yousuf, M. Touqeer, S. Ullah, P. Agboola, M.F. Warsi, I. Shakir, Structural and photocatalytic properties of new rare earth La3+ substituted MnFe2O4 ferrite nanoparticles. Ceram. Int. 46, 14 (2020). https://doi.org/10.1016/j.ceramint.2020.06.103

    Article  CAS  Google Scholar 

  46. J. Revathi, M.J. Abel, C.L. Pearline, T. Sumithra, P.F.H. Inbaraj, Influence of Zn2+ in CoFe2O4 nanoparticles on its photocatalytic activity under solar light irradiation. Inorgan. Chem. Commun. (2020). https://doi.org/10.1016/j.inoche.2020.108186

    Article  Google Scholar 

  47. N. Tariq, R. Fatima, S. Zulfiqar, A. Rahman, M.F. Warsi, I. Shakir, Synthesis and characterization of MoO3/CoFe2O4 nanocomposite for photocatalytic applications. Ceram. Int. 46, 13 (2020). https://doi.org/10.1016/j.ceramint.2020.05.264

    Article  CAS  Google Scholar 

  48. S. Chauhan, B. Tripathi, M. Kumar, M. Sahni, R. Singh, S. Singh, Influence of Na substitution on structural, magnetic, optical and photocatalytic properties of bismuth ferrite nanoparticles. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04540-y

    Article  Google Scholar 

  49. F. Bibi, S. Iqbal, A. Kalsoom, M. Jamshaid, A. Ahmed, M. Mirza, W.A. Qureshi, Magnetically separable Nd and Mn co-doped SrFe12O19 hexa-ferrites nanostructures for the evaluation of structural, magnetic and photo-catalytic studies under solar irradiation for the crystal violet dye removal from the industrial wastes. Ceram. Int. 49, 10 (2023). https://doi.org/10.1016/j.ceramint.2023.01.196

    Article  CAS  Google Scholar 

  50. A. Choudhry, A. Sharma, S.I. Siddiqui, I. Ahamad, M. Sajid, T.A. Khan, S.A. Chaudhry, Origanum vulgare manganese-ferrite nanocomposite: an advanced multifunctional carbon material for dye remediation. Environ. Res. (2022). https://doi.org/10.1016/j.envres.2022.115193

    Article  PubMed  Google Scholar 

  51. M. Abdo, A. El-Daly, Sm-substituted copper–cobalt ferrite nanoparticles: preparation and assessment of structural, magnetic and photocatalytic properties for wastewater treatment applications. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160796

    Article  Google Scholar 

  52. R. Jasrotia, J. Prakash, G. Kumar, R. Verma, S. Kumari, S. Kumar, V.P. Singh, A.K. Nadda, S. Kalia, Robust and sustainable Mg1−xCexNiyFe2−yO4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2022.133706

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

PD Idea for the article and revised the work GR performed the literature search and data analysis, drafted the work, AK, GS revised the work.

Corresponding authors

Correspondence to Pooja Dhiman or Gaurav Sharma.

Ethics declarations

Conflict of interest

The authors have no conflict of interest as defined by Springer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, P., Rana, G., Kumar, A. et al. Co Doped Mg–Zn Spinel Nano-ferrites as a Sustainable Magnetic Nano-photo-catalyst with Reduced Recombination for Photo Degradation of Crystal Violet. J Inorg Organomet Polym 33, 2776–2789 (2023). https://doi.org/10.1007/s10904-023-02698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02698-6

Keywords

Navigation