Skip to main content
Log in

Structural, Optical and Dielectric Properties of Tellurite Borate Glasses Doped with Cerium Oxide

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Synthesis of tellurite borate (35-x) TeO2 + 35 B2O3 + 20 Bi2O3 + 10 Li2O + x CeO2 and x = 0, 0.5, 1.5, 3 mol% glasses have been achieved by using the melt quenching technique. Density, X-ray diffraction (XRD), Raman spectroscopy measurements and UV–Vis analysis were measured. Dielectric measurements were recorded in the frequency range of 100 Hz–100 kHz at room temperature. XRD patterns of all the investigated glass samples doped with CeO2 are completely amorphous. Densities of the prepared glasses increased from 4.80 to 4.89 g/cm3 and molar volumes decreased from 36.74 to 36.14 cm3/mole. Raman spectroscopy reveals that the Raman intensity increases with increasing substitution of CeO2 by TeO2. UV–Vis analysis reveals that a higher CeO2 substitution ratio increased the absorbance and optical properties of produced glass samples. The CeO2 content of tellurium borate glass samples were found to affect all of the optical characteristics. With increasing CeO2 concentration, the optical energy gap decreases \((E_{g}^{opt}\)) from 2.77 to 1.96 eV for direct allowed transitions and from 2.45 to 1.82 eV for indirect allowed transitions. It has also been studied how electrical conductivity and dielectric properties change with frequency and composition. Values ε′, ε″ and σac of sample with x = 0 are greater than those values of with x = 3. The variation of the imaginary part of the electric modulus (M″) versus frequency (F) plot curve is asymmetric of non-Lorentzian type. A shift of the frequency peak towards the higher frequency region was observed by increasing CeO2 mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Morova et al., Tunable continuous-wave laser operation of Tm3+ ion doped tellurite glass near 2 μm. J. Lumin. 252, 119318 (2022)

    Article  CAS  Google Scholar 

  2. P. Patra, K. Annapurna, Transparent tellurite glass-ceramics for photonics applications: a comprehensive review on crystalline phases and crystallization mechanisms. Prog. Mater. Sci 125, 100890 (2022)

    Article  CAS  Google Scholar 

  3. M.A. Sidkey, R.A. El Mallawany, A.A. Abousehly, Y.B. Saddeek, Relaxation of longitudinal ultrasonic waves in some tellurite glasses. Mater. Chem. Phys. 74(2), 222–229 (2002)

    Article  CAS  Google Scholar 

  4. R.N. Hampton, W. Hong, G.A. Saunders, R. El-Mallawany, The electrical conductivity of pure and binary TeO2 glasses. J. Non-Cryst. Solids 94(3), 307–314 (1987)

    Article  CAS  Google Scholar 

  5. R.N. Hampton, W. Hong, G. Saunders, R. El-Mallawany, Dielectric properties of tellurite glass. Phys. Chem. Glasses 29(3), 100–105 (1988)

    CAS  Google Scholar 

  6. A. Abdel-Kader, A.A. Higazy, R. El-Mallawany, M. Elkholy, The effect of gamma irradiation on the electrical conductivity of TeO2-P2O5 and Bi2O3-TeO2-P2O5 glasses. Radiat. Effects Defects Solids 124, 401–407 (1992)

    Article  CAS  Google Scholar 

  7. C. Li, L. Zhu, D. Zhao, J. Li, Y. Zhou, Broadband NIR radiative transitions in Er3+/Tm3+ co-doping tellurite glass material. Mater. Res. Bull. 158, 112042 (2023)

    Article  CAS  Google Scholar 

  8. R. El-Mallawany, A. Abd El-Moneim, Comparison between the elastic moduli of tellurite and phosphate glasses. Phys. Status Solidi A 166, 829–834 (1998)

    Article  CAS  Google Scholar 

  9. J. He, L. Chen, H. Li, J. Niu, Y. Ma, Novel 3.1 µm and enhanced 2.7 µm emissions in Er3+ doped fluorotellurite glasses ceramic. J. Alloys Compds. 895, 162606 (2022)

    Article  CAS  Google Scholar 

  10. R. Boda, M.D. Shareefuddin, M.N. Chary, R. Sayanna, FTIR and optical properties of europium doped lithium zinc bismuth borate glasses. Mater. Today 3, 1914–1922 (2016)

    Article  Google Scholar 

  11. N. Gupta, A. Kaur, A. Khanna, F. Gonzàlez, C. Pesquera, R. Iordanova, B. Chen, Structure-property correlations in TiO2-Bi2O3- B2O3-TeO2 glasses. J. Non-Cryst. Solids 470, 168–177 (2017)

    Article  CAS  Google Scholar 

  12. T.M. Machado, L.P.F. Peixoto, G.F.S. Andrade, M.A.P. Silva, Copper nanoparticles–containing tellurite glasses: an efficient SERS substrate. Mater. Chem. Phys. 278, 125597 (2022)

    Article  CAS  Google Scholar 

  13. R. El-Mallawany, M. Sidkey, A. Khafagy, H. Afifi, Elastic constants of semiconducting tellurite glasses. Mater. Chem. Phys. 37, 295–298 (1994)

    Article  CAS  Google Scholar 

  14. I.Z. Hager, R. El-Mallawany, M. Poulain, Infrared and Raman spectra of new molybdenum and tungsten oxyfluoride glasses. J. Mater. Sci. 34(21), 5163–5168 (1999)

    Article  CAS  Google Scholar 

  15. F. Aouaini, A. Maaoui, N.B. Mohamed, M.M. Alanazi, L.A. El Maati, Visible to infrared down conversion of Er3+ doped tellurite glass for luminescent solar converters. J. Alloys Compd. 894, 162506 (2022)

    Article  CAS  Google Scholar 

  16. M.P. Belançon, M. Sandrini, H.S. Muniza, L.S. Herculano, G.V.B. Lukasievicz, E.L. Savic, O.A. Capeloto, L.C. Malacarne, N.G.C. Astrath, M.L. Baesso, G.J. Schiavond, A.A. Silva Juniord, J.D. Marconie, Float, borosilicate and tellurites as cover glasses in Si photovoltaics: Optical properties and performances under sunlight. J. Phys. Chem. Solids 161, 110396 (2022)

    Article  Google Scholar 

  17. I. Ferodolin, A. Awang, S.K. Ghoshal, A. Samavati, Ch.F. Pien, J. Dayoud, Plasmonic effect of bimetallic TiO2/Al2O3 nanoparticles in tellurite glass for surface-enhanced Raman scattering applications. J. Lumin. 241, 118488 (2022)

    Article  CAS  Google Scholar 

  18. T.O. Sales, C. Jacinto, W.F. Silva, R. Antunes, D.T. Dias, A. Gonçalves, R. El-Mallawany, N.G.C. Astrath, A. Novatski, White light source and optical thermometry based on zinc-tellurite glass tri-doped with Tm3+/Er3+/Sm3+. J. Alloys Compd. 899, 163305 (2022)

    Article  CAS  Google Scholar 

  19. S.F. Hosseini, D. Souri, A.N. Emamzadeh, Functional thermal stable samples: non-isothermal calorimetric analysis of MoO3–V2O5–TeO2 oxide glasses. J. Inorg. Organomet. Polym. Mater. 31, 2877–2890 (2021)

    Article  CAS  Google Scholar 

  20. A. Aşkın, M.I. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M.R. Kaçal, Investigation of the gamma ray shielding parameters of (100–x) [0.5 Li2O–0.1 B2O3–0.4 P2O5]-xTeO2 glasses using Geant4 and FLUKA codes. J. Non-Cryst. Solids 521, 119489 (2019)

    Article  Google Scholar 

  21. G.P. Singh, P. Kaur, S. Kaur, D.P. Singh, Investigation of structural, physical and optical properties of CeO2–Bi2O3– B2O3 glasses. Phys. B 407, 4168–4172 (2012)

    Article  Google Scholar 

  22. H.A. Abo-Mosallam, S.E. Ibrahim, The impact of V2O5 and SnO2 on structure, physical and electrical properties of lithium copper fluorophosphate glasses. J. Non Cryst. Solids 592, 121745 (2022)

    Article  CAS  Google Scholar 

  23. S.R. Rejisha, P.S. Anjana, N. Gopakumar, Effect of cerium(IV) oxide on the optical and dielectric properties of strontium bismuth borate glasses. J. Mater. Sci. 27, 5475–5482 (2016)

    CAS  Google Scholar 

  24. M. Ceriotti, F. Pietrucci, M. Bernasconi, Ab initio, study of the vibrational properties of crystalline TeO2: α, β, and γ phases. Phys. Rev. B 73, 104304 (2006)

    Article  Google Scholar 

  25. A. Kaur, A. Khanna, F. González, C. Pesquera, B. Chen, Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses. J. Non- Cryst. Solids 444, 1–10 (2016)

    Article  CAS  Google Scholar 

  26. J.C. Sabadel, P. Armand, D. Cachau-Herreillat, P. Baldeck, O. Doclot, A. Ibanez, E. Philippot, Structural and nonlinear optical characterizations of tellurium oxidebased glasses: TeO2–BaO–TiO2. J. Solid State Chem. 132, 411–419 (1997)

    Article  CAS  Google Scholar 

  27. R.S. Kundu, S. Dhankhar, R. Punia, K. Nanda, N. Kishore, Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. J. Alloys Compd. 587, 66–73 (2014)

    Article  CAS  Google Scholar 

  28. P. Colomban, A. Slodczyk, Raman intensity: an important tool to study the structure and phase transitions of amorphous/crystalline materials. Opt. Mater. 31, 1759–1763 (2009)

    Article  CAS  Google Scholar 

  29. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. (1970). https://doi.org/10.1080/14786437008221061

    Article  Google Scholar 

  30. A.S. Abouhaswa, Y.S. Rammah, S.E. Ibrahim, A.A. El-Hamalawy, Structural, optical, and electrical characterization of borate glasses doped with SnO2. J. Non Cryst. Solids (2018). https://doi.org/10.1016/j.jnoncrysol.2018.04.051

    Article  Google Scholar 

  31. P. Chimalawong, J. Kaewkhao, C. Kedkaew, P. Limsuwan, Optical and electronic polarizability investigation of Nd3+-doped soda-lime silicate glasses. J. Phys. Chem. Solids. 71, 965–970 (2010)

    Article  CAS  Google Scholar 

  32. R.S. Gedam, D.D. Ramteke, Influence of CeO2 addition on the electrical and optical properties of lithium borate glasses. J. Phys. Chem. Solids 74, 1399–1402 (2013)

    Article  CAS  Google Scholar 

  33. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  Google Scholar 

  34. F. Abeles, Opt Prop. Solids (North-Holland Publ Company, London, 1972)

    Google Scholar 

  35. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  36. N. Gupta, A. Kaur, A. Khanna, F. Gonzàlez, C. Pesquer, R. Iordanova, B. Chen, Structure-property correlations in TiO2-Bi2O3-B2O3-TeO2 glasses. J. Non Cryst. Solids 470, 168–177 (2017)

    Article  CAS  Google Scholar 

  37. A. Kaur, A. Khanna, P.S.R. Krishna, A.B. Shinde, M. González-Barriuso, F. González, B. Chen, Structure of copper tellurite and borotellurite glasses by neutron diffraction, Raman, 11B MASNMR and FTIR spectroscopy. Phys. Chem. Glasses 61, 27–39 (2020)

    Google Scholar 

  38. R.M.M. Morsi, S.I.A. El-Ghany, M.M. Morsi, Electrical properties of silicate glasses of low level gadolinium oxide doping including dielectric and infrared measures. J. Mater. Sci. 26, 1419–1426 (2015). https://doi.org/10.1007/s10854-014-2556-0

    Article  CAS  Google Scholar 

  39. A.M. Nawar, H.M. Abd El-Khalek, M.M. El-Nahass, Dielectric and electric modulus studies on Ni (II) tetraphenyl porphyrin thin films. Org. Opto-Elect. 1, 25–38 (2015)

    Google Scholar 

  40. F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, Electrical relaxation in a glass-forming molten salt. J. Phys. Chem. 78, 639–648 (1974)

    Article  CAS  Google Scholar 

  41. F. Yakuphanoglu, I.S. Yahia, B.F. Senkal, G.B. Sakr, W.A. Farooq, Impedance spectroscopy properties of polypyrrole doped with boric acid. Synth. Met. 161, 817–822 (2011)

    Article  CAS  Google Scholar 

  42. S. Chisca, V.E. Musteata, I. Sava, M. Bruma, Dielectric behavior of some aromatic polyimide films. J. Eur. Polym. 47, 1186–1197 (2011)

    Article  CAS  Google Scholar 

  43. S. Kurien, J. Mathew, S. Sebastian, S.N. Potty, K.C. George, Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate. Mater. Chem. Phys. 98, 470–476 (2006)

    Article  CAS  Google Scholar 

  44. D.K. Mahato, A. Dutta, T.P. Sinha, Dielectric relaxation and ac conductivity of double perovskite oxide Ho2ZnZrO6. Physica B 406, 2703–2708 (2011)

    Article  CAS  Google Scholar 

  45. M. Eltabey et al., Structural, electrical and magnetic properties of high iron content sodium borosilicate glass. J. Appl. Phys. 8, 95–102 (2016)

    Google Scholar 

  46. K. Majhi, K.B.R. Varma, K.J. Rao, Possible mechanism of charge transport and dielectric relaxation in SrO-Bi2O3-B2O3 glass. J. Appl. Phys. 106, 084106 (2009)

    Article  Google Scholar 

  47. M.T. Ahmed, H. Elhendawy, Z.M. Elqahtani, W.B. Elsharkawy, M.A. Azzam, T. Fahmy, Electric modulus and scaling behaviour of Chitosan/PVA biopolymer blend Egypt. J. Chem. 65, 459–471 (2022)

    Google Scholar 

  48. M. Boora, S. Malik, V. Kumar, M. Bala, S. Arora, S. Rohilla, A. Kumar, J. Dala, Investigation of structural and impedance spectroscopic properties of borate glasses with high Li+ concentration. Solid State Ionics 368, 115704 (2021)

    Article  CAS  Google Scholar 

  49. S. Dahiya, R. Punia, A. Singh, A.S. Maan, S. Murugavel, DC conduction and electric modulus formulation of lithium-doped bismuth zinc vanadate semiconducting glassy system. J. Am. Ceram. Soc. 98, 2776–2783 (2015)

    Article  CAS  Google Scholar 

  50. M. Tijaria, Y. Sharma, V. Kumar, S. Dahiya, J. Dalal, Effect of Na2O on physical, structural and electrical properties of borate glasses. Mater. Today 45, 3722–3725 (2021)

    Article  CAS  Google Scholar 

  51. Y.J. Wong, J. Hassan, M. Hashim, Dielectric properties impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid reaction. J. Alloys Compd. 571, 138–144 (2013)

    Article  CAS  Google Scholar 

  52. S.B. Aziz, O.G. Abdullah, S.R. Saeed, H.M. Ahmed, Electrical and dielectric properties of copper Ion conducting solid polymer electrolytes based on Chitosan: CBH model for ion transport mechanism. Int. J. Electrochem. Sci. 13, 3812–3826 (2018). https://doi.org/10.20964/2018.04.10

    Article  CAS  Google Scholar 

  53. A. Dutta, T.P. Sinha, P. Jena, S. Adak, Ac conductivity and dielectric relaxation in ionically conducting soda-lime-silicate glasses. J. Non-Cryst. Solids 354, 3952–3957 (2008)

    Article  CAS  Google Scholar 

  54. S. Bhattacharya, A. Ghosh, Conductivity relaxation in some fast ion-conducting AgI-Ag2O-V2O5 glasses. Solid State Ionics 161, 61–65 (2003)

    Article  CAS  Google Scholar 

  55. R.V. Barde, K.R. Nemade, S.A. Waghuley, AC conductivity and dielectric relaxation in V2O5–P2O5–B2O3 glasses. J. Asian Ceram. Soc. 3, 116–122 (2015)

    Article  Google Scholar 

  56. R. El-Mallawany, A.H. El-Sayed, M.M.H.A. El-Gawad, ESR and electrical conductivity studies of (TeO2) 0.95 (CeO2) 0.05 semiconducting glasses. Mater. Chem. Phys. 41(2), 87–91 (1995)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SEI and ASA performed all the experimental work (Glass samples preparation and its characterization) and prepared manuscript. RE-M helped significantly in the explanation of experimental results and revised manuscript.

Corresponding author

Correspondence to A. S. Abouhaswa.

Ethics declarations

Conflict of interest

There is no conflict of interest among the contributing authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S.E., El-Mallawany, R. & Abouhaswa, A.S. Structural, Optical and Dielectric Properties of Tellurite Borate Glasses Doped with Cerium Oxide. J Inorg Organomet Polym 33, 2319–2330 (2023). https://doi.org/10.1007/s10904-023-02682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02682-0

Keywords

Navigation