Skip to main content
Log in

Impact of Hydrothermal Treatment on the Porous Structure and Adsorption Properties of Spherically Granulated Zirconium Silicate

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present study the spherically granulated micro- and mesoporous zirconium silicates were prepared and thermally treated in the wide region of temperatures 110–700 °C. Physico-chemical properties of materials obtained were investigated by powder X-ray diffraction, low-temperature nitrogen adsorption/desorption method and scanning electron microscopic studies. It was found that calcination leads to significant decreasing the surface area and total pore volumes of zirconium silicates. After hydrothermal treatment of spherically granulated material previously dried at room temperature the positive changes of porous structure with significant increasing the total surface area and volume of mesopores it was fixed. Adsorption properties of as-prepared samples and obtained after thermal and hydrothermal treatments in the process of removing Cu2+, Ni2+ and Co2+ cations from water solution were examined. It was determined that zirconium silicate hydrothermally treated at 300 °C during 5 h hours has the biggest surface area and shows the lowest decreasing adsorption capacity among sorbents calcined toward cobalt and nickel ions and could be used as perspective material for effective removing the d-metal ions at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.A. Kydralieva, G.I. Dzhardimalieva, A.A. Yurishcheva, S.J. Jorobekova, J. Inorg. Organomet. Polym. 26, 1212 (2016). https://doi.org/10.1007/s10904-016-0436-1

    Article  CAS  Google Scholar 

  2. R. Kumar, M.A. Laskar, I.F. Hewaidy, M.A. Barakat, Earth. Syst. Environ. 3, 83 (2019). https://doi.org/10.1007/s41748-018-0085-3

    Article  Google Scholar 

  3. I. Ihsanullah, M. Sajid, S. Khan, M. Bilal, Sep. Purif. Technol. 291, 120923 (2022). https://doi.org/10.1016/j.seppur.2022.120923

    Article  CAS  Google Scholar 

  4. M.E. Mahmoud, G.M. Nabil, S.M.E. Mahmoud, J. Environ. Chem. Eng. 3(2), 1320 (2015). https://doi.org/10.1016/j.jece.2014.11.027

    Article  CAS  Google Scholar 

  5. B. Zhang, Y. Wu, Y. Fan, J. Inorg. Organomet. Polym. 29, 290 (2019). https://doi.org/10.1007/s10904-018-0987-4

    Article  CAS  Google Scholar 

  6. J. Qu, X. Tian, Zh. Jiang, B. Cao, M.S. Akindolie, Q. Hu, Ch. Fenga, Y. Fenga, X. Meng, Y. Zhang, J. Hazard. Mater. 387, 121718 (2020). https://doi.org/10.1016/j.jhazmat.2019.121718

    Article  CAS  PubMed  Google Scholar 

  7. P. Shende, N.P. Devlekar, Curr. Nanosci. 17(6), 819 (2021). https://doi.org/10.2174/1573413716999201209105819

    Article  CAS  Google Scholar 

  8. S. Gupta, S. Sireesha, I. Sreedhar, Ch.M. Patel, K.L. Anitha, J. Water Process Eng. 38, 101561 (2020). https://doi.org/10.1016/j.jwpe.2020.101561

    Article  Google Scholar 

  9. C. Hood, E. Pensini, Water Air Soil Pollut. 233, 137 (2022). https://doi.org/10.1007/s11270-022-05609-6

    Article  CAS  Google Scholar 

  10. R.S. Hassan, M.R. Abass, M.A. Eid, E.A. Abdel-Galil, Appl. Radiat. 178, 109985 (2021). https://doi.org/10.1016/j.apradiso.2021.109985

    Article  CAS  Google Scholar 

  11. M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varmac, Chemosphere 263, 128005 (2021). https://doi.org/10.1016/j.chemosphere.2020.128005

    Article  CAS  PubMed  Google Scholar 

  12. D.V. Tarnovsky, M.M. Tsyba, L.S. Kuznetsova, T.A. Khodakovska, I.V. Romanova, J. Chem. Technol. 29(2), 192 (2021). https://doi.org/10.15421/jchemtech.v29i2.232199

    Article  CAS  Google Scholar 

  13. D. Bhatt, N. Gururani, A. Srivastava, PCh. Srivastav, Environ. Earth. Sci. 80, 273 (2021). https://doi.org/10.1007/s12665-021-09566-x

    Article  CAS  Google Scholar 

  14. S. Safari, B.G. Lottermoser, D.S. Alessi, Appl. Mater. Today 19, 100638 (2020). https://doi.org/10.1016/j.apmt.2020.100638

    Article  Google Scholar 

  15. I.Z. Zhuravlev, M.F. Kovtun, A.V. Botsman, Sep. Sci. Technol. (2021). https://doi.org/10.1080/01496395.2021.1934024

    Article  Google Scholar 

  16. P. Vassileva, P. Tzvetkova, L. Lakov, O. Peshev, J. Porous Mater. 15, 593 (2008). https://doi.org/10.1007/s10934-007-9138-y

    Article  CAS  Google Scholar 

  17. H. Li, Y. Huang, J. Liu, H. Duan, Chemosphere 282, 131046 (2021). https://doi.org/10.1016/j.chemosphere.2021.131046

    Article  CAS  PubMed  Google Scholar 

  18. M. Maslova, N. Mudruk, A. Ivanets, I. Shashkova, N. Kitikova, Environ. Sci. Pollut. Res. 27, 3933 (2020). https://doi.org/10.1007/s11356-019-06949-3

    Article  CAS  Google Scholar 

  19. D.V. Tarnovsky, I.K. Chepurna, S.I. Meleshevych, V.I. Davydov, I.V. Romanova, Res. Chem. Intermed. 48, 2253 (2022). https://doi.org/10.1007/s11164-022-04691-z

    Article  CAS  Google Scholar 

  20. Zh. Dinga, M. Ridley, J. Deijkers, N. Liu, Sh. Bin Hoque, J. Gaskins, M. Zebarjadi, P. Hopkins, H.Wadley, E. Opila, K. Esfarjani, Materialia 12, 100793 (2020). https://doi.org/10.1016/j.mtla.2020.100793.

  21. A.I. Bortun, L.N. Bortun, A. Clearfield, Chem. Mater. 9, 1854 (1997). https://doi.org/10.1021/cm9701419

    Article  CAS  Google Scholar 

  22. A. Clearfield, A.I. Bortun, L.N. Bortun, D.M. Poojary, S.A. Khainakov, J. Mol. Struct. 470, 207 (1998). https://doi.org/10.1016/S0022-2860(98)00482-7

    Article  CAS  Google Scholar 

  23. Ch.S. Fewox, Sh.R. Kirumakki, A. Clearfield, Chem. Mater. 19, 384 (2007). https://doi.org/10.1021/cm061835x

    Article  CAS  Google Scholar 

  24. Ch.S. Fewox, A. Clearfield, J. Phys. Chem. A 112, 2589 (2008). https://doi.org/10.1021/jp709592x

    Article  CAS  PubMed  Google Scholar 

  25. I.M. El-Naggar, E.A. Mowafy, Y.F. El-Aryan, M.G. Abd El-Wahed, Solid State Ionics 178, 741 (2007). https://doi.org/10.1016/j.ssi.2007.03.009

  26. M.E. Mahmoud, G.M. Nabil, S.M.E. Mahmoudet, J. Environ. Chem. Eng. 3, 1320 (2015). https://doi.org/10.1016/j.jece.2014.11.027

    Article  CAS  Google Scholar 

  27. D. Skoda, A. Styskalik, Z. Moravec, P. Bezdicka, J. Pinkas, J. Mater. Sci. 50, 3371 (2015). https://doi.org/10.1007/s10853-015-8888-1

    Article  CAS  Google Scholar 

  28. S. Nazer, A.N. Chermahini, B.H. Monjezi, H.A. Dabbagh, J. Taiwan Inst. Chem. Eng. 114, 168 (2020). https://doi.org/10.1016/j.jtice.2020.09.007

    Article  CAS  Google Scholar 

  29. B. El-Gammal, S.A. Shady, Colloids. Surf. 287, 132 (2006). https://doi.org/10.1016/j.colsurfa.2006.02.068

    Article  CAS  Google Scholar 

  30. J.M. Palomino, D.T. Tran, A.R. Kareh, Ch.A. Miller, J.M.V. Gardner, H. Dong, S.R.J. Oliver, J. Power Sources 278, 141 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.043

    Article  CAS  Google Scholar 

  31. Ch. Yue, P.C.M.M. Magusin, B. Mezari, M. Rigutto, E.J.M. Hensen, Microporous Mesoporous Mater. 180, 48–55 (2013). https://doi.org/10.1016/j.micromeso.2013.06.032

    Article  CAS  Google Scholar 

  32. T.M.B. Campos, N.C. Ramos, J.D.M. Matos, G.P. Thim, R.O.A. Souza, M.A. Bottino, L.F. Valandro, R.M. Melo, J. Mech. Behav. Biomed. Mater. 109, 103774 (2020). https://doi.org/10.1016/j.jmbbm.2020.103774.

  33. V.V. Baghramyan, A.A. Sargsyan, A.S. Sargsyan, N.B. Knyayan, V.V. Harutyunyan, E.M. Aleksanyan, N.E. Grigoryan, A.H. Badalyan, Arm. J. Phys. 10(1), 56 (2017)

    CAS  Google Scholar 

  34. V.I. Yakovlev, V.V. Strelko, M.V. Kravchenko, Sol–gel method of obtaining spherically granular highly porous zirconium silicate. UA Patent 105,999 (2016) (in Ukrainian)

  35. A. Clearfield, A.I. Bortun, S.A. Khainakov, L.N. Bortun, V.V. Strelko, V.N. Khryaschevskii, Waste Manag. 18, 203 (1998)

    Article  CAS  Google Scholar 

  36. I.Z. Zhuravlev, V.A. Kanibolotsky, V.V. Strelko, G.P. Gallios, Sep. Sci. Technol. 39, 287 (2004). https://doi.org/10.1081/SS-120027559

    Article  CAS  Google Scholar 

  37. V.V. Strelko, J. Sol-Gel Sci. Technol. 68, 438 (2013). https://doi.org/10.1007/s10971-013-2990-0

    Article  CAS  Google Scholar 

  38. F. Mahmood, H. Hu, L. Cao, G. Lu, S. Ni, J. Yuan, Ann. Nucl. Energy 125, 138 (2019). https://doi.org/10.1016/j.anucene.2018.10.031

    Article  CAS  Google Scholar 

  39. M. Khalil, Y.F. El-Aryan, I.M. Ali, J. Inorg. Organomet. Polym. 26, 359 (2016). https://doi.org/10.1007/s10904-015-0318-y

    Article  CAS  Google Scholar 

  40. A. Patterson, Phys Rev. 56, 972 (1939)

    Article  CAS  Google Scholar 

  41. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  42. A. Kaiser, M. Lobert, R. Telle, J. Eur. Ceram. Soc. 28, 2199 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.040

    Article  CAS  Google Scholar 

  43. A.M. Neris, J.M. Ferreira, M.G. Fonseca, I.M. Garcia dos Santos, J. Therm. Anal. Calorim. 143, 3307 (2021). https://doi.org/10.1007/s10973-020-09286-7

  44. I. Romanova, S. Kirillov, J. Therm. Anal. Calorim. 132, 503 (2018). https://doi.org/10.1007/s10973-017-6880-5

    Article  CAS  Google Scholar 

  45. S. Tong, Sh. Zhang, H. Yin, J. Wang, M. Chen, J. Anal. Appl. Pyrol. 155, 105074 (2021). https://doi.org/10.1016/j.jaap.2021.105074

    Article  CAS  Google Scholar 

  46. V. Raju, S. Jaenicke, G.-K. Chuah, Appl. Catal. B 91(1–2), 92 (2009). https://doi.org/10.1016/j.apcatb.2009.05.010

    Article  CAS  Google Scholar 

  47. A.V. Redkina, N.V. Kravchenko, N.D. Konovalova, V.V. Strelko, Vopr. Khimii i Khimicheskoi Tekhnologii 2, 117 (2021). http://udhtu.edu.ua/public/userfiles/file/VHHT/2021/2/Redkina.pdf

Download references

Acknowledgements

Financial support for this study has been provided by National Academy of Sciences of Ukraine within the framework of the target research program “Synthesis and physicochemical studies of composite materials for environmental purposes based on natural and synthetic silicates”, 2022-2024. The authors thank O. I. V’yunov for his help in carrying out XRD measurements and M. M. Tsyba for supporting the porous investigations the materials.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and morphology investigation were performed by MVK and IZZ, adsorption data collection and analysis were performed by SIM. OAD was carrying out all SEM measurements.The first draft of the manuscript was written by IR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Iryna V. Romanova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, M.V., Diyuk, O.A., Zhuravlev, I.Z. et al. Impact of Hydrothermal Treatment on the Porous Structure and Adsorption Properties of Spherically Granulated Zirconium Silicate. J Inorg Organomet Polym 33, 2346–2353 (2023). https://doi.org/10.1007/s10904-023-02663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02663-3

Keywords

Navigation