Skip to main content

Advertisement

Log in

Synthesis and Electrochemical Properties of Silver Incorporated Biochar Nanocomposites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present work, we have synthesised silver nanoparticles (Ag NPs) using the leaf extract of Ficus religiosa. The Ag NPs were incorporated with biochar (derived from algal biomass powder) and used as an electrode material for supercapacitors. The presence of different phytochemicals in the leaf extract of Ficus religiosa was confirmed using different phytochemical tests. The prepared nanocomposite (Biochar/Ag) was analysed using different analytical methods. Galvanostatic charge–discharge, electrochemical impedance analysis, and cyclic voltammetry have all been used in the electrochemical investigation. The maximum specific capacitance of Biochar/Ag was calculated to be 675 F/g. The cyclic stability of Biochar/Ag was observed to be 96.1% after 5000 GCD cycles under three electrode systems. The maximum power density of Biochar/Ag has been found to be 3168 W/kg. The developed Biochar/Ag can be utilised as an effective and low-cost electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Poonam, K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: Materials and devices. J. Energy Storage 21, 801–825 (2019). https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  2. M. Sawangphruk, M. Suksomboon, K. Kongsupornsak, J. Khuntilo, P. Srimuk, Y. Sanguansak, P. Klunbud, P. Suktha, P. Chiochan, High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper. J. Mater. Chem. A 1(34), 9630–9636 (2013). https://doi.org/10.1039/C3TA12194A

    Article  CAS  Google Scholar 

  3. W. Zhou, X. Liu, K. Zhou, J. Jia, Carbon materials for supercapacitors, in Nanomaterials in Advanced Batteries and Supercapacitors. ed. by K.I. Ozoemena, S. Chen (Springer, Cham, 2016), pp.271–315

    Chapter  Google Scholar 

  4. P.R. Yaashika, P.S. Kumar, S. Varjani, A.A. Saravanan, A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotech. Rep. 28, e00570 (2020). https://doi.org/10.1016/j.btre.2020.e00570

    Article  Google Scholar 

  5. X. Li, J. Zhang, B. Liu, Z. Su, A critical review on the application and recent developments of post-modified biochar in supercapacitors. J. Clean. Prod. 310, 127428 (2021). https://doi.org/10.1016/j.jclepro.2021.127428

    Article  CAS  Google Scholar 

  6. Y. Zhang, W. Sun, F. Yang, Electrochemical performance of potato-derived activated carbon: effect of compressive stress. J. Energy Storage 37, 102476 (2021). https://doi.org/10.1016/j.est.2021.102476

    Article  Google Scholar 

  7. Y. Ding, T. Wang, D. Dong, Y. Zhang, Using biochar and coal as the electrode material for supercapacitor applications. Front. Energy Res. 7, 159 (2020). https://doi.org/10.3389/fenrg.2019.00159

    Article  Google Scholar 

  8. Z. Husain, A.S. Raheman, K.B. Ansari, A.B. Pandit, M.S. Khan, M.A. Qyyum, S.S. Lam, Nano-sized mesoporous biochar derived from biomass pyrolysis as electrochemical energy storage supercapacitor. Mater. Sci. Energy Technol. 5, 99–109 (2022). https://doi.org/10.1016/j.mset.2021.12.003

    Article  CAS  Google Scholar 

  9. S.A. Delbari, L.S. Ghadimi, R. Hadi, S. Farhoudian, M. Nedaei, A. Babapoor, A.S. Namini, Q. Van Le, M. Shokouhimehr, M.S. Asl, M. Mohammadi, Transition metal oxide-based electrode materials for flexible supercapacitors: a review. J. Alloys Compd. 15, 158281 (2021). https://doi.org/10.1016/j.jallcom.2020.158281

    Article  CAS  Google Scholar 

  10. D.C. Lekha, R. Shanmugam, K. Madhuri, L.P. Dwarampudi, M. Bhaskaran, D. Kongara, J.L. Tesfaye, N. Nagaprasad, V.N.N. Bhargavi, R. Krishnaraj, Review on silver nanoparticle synthesis method, antibacterial activity, drug delivery vehicles, and toxicity pathways: recent advances and future aspects. J. Nanomater. (2021). https://doi.org/10.1155/2021/4401829

    Article  Google Scholar 

  11. S. Dhibar, C.K. Das, Silver nanoparticles decorated polypyrrole/graphene nanocomposite: a potential candidate for next-generation supercapacitor electrode material. J. Appl. Polym. Sci. 134, 44724 (2017). https://doi.org/10.1002/app.44724

    Article  CAS  Google Scholar 

  12. P. Rauwel, S. Küünal, S. Ferdov, E. Rauwel, A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/682749

    Article  Google Scholar 

  13. C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 11(5), 2804–2837 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S.B. Chandrasekar, M. Bhanumathy, A.T. Pawar, T. Somasundaram, Phytopharmacology of Ficus religiosa. Pharmcogn. Rev. 4(8), 195 (2010)

    Article  CAS  Google Scholar 

  15. A. Kumar, V. Tomer, Y. Gat, V. Kumar, Ficus religiosa: a wholesome medicinal tree. J. Pharm. Phytochem. 7(4), 32–37 (2018)

    Google Scholar 

  16. N.C. Joshi, N. Chaudhary, N. Rai, Medicinal plant leaves extract based synthesis, characterisations and antimicrobial activities of ZrO2 nanoparticles (ZrO2 NPs). BioNanoScience (2021). https://doi.org/10.1007/s12668-021-00829-2

    Article  Google Scholar 

  17. N.C. Joshi, B.S. Rawat, H. Bisht, V. Gajraj, N. Kumar, S. Chetana, P. Gururani, Synthesis and supercapacitive behaviour of SnO2/r-GO nanocomposite. Synthetic Met. 289, 117132 (2022). https://doi.org/10.1016/j.synthmet.2022.117132

    Article  CAS  Google Scholar 

  18. G. Nandini, T.S. Gopenath, N. Prasad, M. Karthikeyan, A. Gnanasekaran, M.S. Ranjth, P. Palanisamy, K.M. Basalingappa, Phytochemical analysis and antioxidant properties of leaf extracts of carica papaya. Asian J. Pharm. Clin. Res. 13, 58–62 (2020). https://doi.org/10.22159/ajpcr.2020.v13i11.38956

    Article  CAS  Google Scholar 

  19. S. Shubham, R. Mishra, M. Gautam, M. Nepal, N. Kashyap, K. Dutta, Phytochemical analysis of papaya leaf extract: screening test. EC Dent. Sci. 18, 485–490 (2019)

    Google Scholar 

  20. W.M. Khalir, W.K.A. Shameli, K. Jazayeri, S.D. Othman, N.A. CheJusoh, N.M. Hassan, Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Fron. Chem. 8, 620 (2020). https://doi.org/10.3389/fchem.2020.00620

    Article  CAS  Google Scholar 

  21. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9(3), 217–227 (2016). https://doi.org/10.1016/j.jrras.2015.10.002

    Article  CAS  Google Scholar 

  22. R. Janu, V. Mrlik, D. Ribitsch, J. Hofman, P. Sedláček, L. Bielská, G. Soja, Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Res. Convers. 4, 36–46 (2021). https://doi.org/10.1016/j.crcon.2021.01.003

    Article  CAS  Google Scholar 

  23. B. Singh, Y. Fang, C.T. Johnston, A fourier-transform infrared study of biochar aging in soils. Soil Sci. Soc. Am. J. 80(3), 613–622 (2016). https://doi.org/10.2136/sssaj2015.11.0414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Vanaja, G. Annadurai, Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 3(3), 217–223 (2013). https://doi.org/10.1007/s13204-012-0121-9

    Article  CAS  Google Scholar 

  25. H. Zhang, W. Liu, L. Yang, J. Liu, Y. Wang, X. Mao, J. Wang, X. Xu, Fabrication of reduced graphene oxide-Ag nanocomposites and analysis on the interaction with BSA. J. Nanomater. (2021). https://doi.org/10.1155/2019/2707909

    Article  Google Scholar 

  26. A. Dandia, A. Sharma, V. Parewa, B. Kumawat, K.S. Rathore, A. Sharma, Amidic C-N bond cleavage of isatin: chemoselective synthesis of pyrrolo[2,3,4-kl]acridin-1-ones using Ag NPs decorated rGO composite as an efficient and recoverable catalyst under microwave irradiation. RSC Adv. 5, 91888–91902 (2015). https://doi.org/10.1039/C5RA11747J

    Article  CAS  Google Scholar 

  27. F. Koohpeima, M.J. Mokhtari, S. Khalafi, The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols. J. Appl. Oral Sci. 367, 367–373 (2017). https://doi.org/10.1590/1678-7757-2016-0391

    Article  CAS  Google Scholar 

  28. C. Wang, J. Zhou, F. Du, Synthesis of highly reduced graphene oxide for supercapacitor. J. Nanomater. (2016). https://doi.org/10.1155/2016/4840301

    Article  Google Scholar 

  29. Y. Meng, A sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomaterials 5, 1124–1135 (2015). https://doi.org/10.3390/nano5021124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Zhou, Q. Liang, A. Pan, X. Zhang, Q. Zhu, S. Liang, G. Cao, The general synthesis of Ag nanoparticles anchored on silver vanadium oxides: towards high performance cathodes for lithium-ion batteries. J. Mater. Chem. A 2, 11029–11034 (2014). https://doi.org/10.1039/C4TA00437J

    Article  CAS  Google Scholar 

  31. A.S. Lanje, S.J. Sharma, R.B. Pode, Synthesis of silver nanoparticles: a safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2, 478–483 (2010)

    CAS  Google Scholar 

  32. Y. Liu, X. Zhao, J. Li, D. Ma, R. Han, Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalin. Water Treat. 46(1–3), 115–123 (2012). https://doi.org/10.1080/19443994.2012.677408

    Article  CAS  Google Scholar 

  33. Y. Zhou, H. Zhang, L. Cai, J. Guo, Y. Wang, L. Ji, W. Song, Preparation and characterization of macroalgae biochar nanomaterials with highly efficient adsorption and photodegradation ability. Materials 11(9), 1709 (2018). https://doi.org/10.3390/ma11091709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Yun, S. Hwang, Analysis of the charging current in cyclic voltammetry and supercapacitor’s galvanostatic charging profile based on a constant-phase element. ACS Omega 6, 367–373 (2020). https://doi.org/10.1021/acsomega.0c04702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020

    Article  CAS  Google Scholar 

  36. S. Mehtab, M.G.H. Zaidi, T.I. Siddiqi, Designing fructose stabilized silver nanoparticles for mercury (II) detection and potential antibacterial agents. Mater. Sci. Res. India 15, 241–249 (2018). https://doi.org/10.13005/msri/150305

    Article  CAS  Google Scholar 

  37. M.E. Yazdanshenas, M. Shateri-Khalilabad, The effect of alkali pre-treatment on formation and adsorption of silver nanoparticles on cotton surface. Fibers Polym. 13, 1170–1178 (2012). https://doi.org/10.1007/s12221-012-1170-0

    Article  CAS  Google Scholar 

  38. N.C. Joshi, T. Negi, P. Gururani, Papaya (Carica papaya) leaves extract based synthesis, characterizations and antimicrobial activities of CeO2 nanoparticles (CeO2 NPs). Inorg. Nano-Met. Chem. (2023). https://doi.org/10.1080/24701556.2023.2166068

    Article  Google Scholar 

  39. N.C. Joshi, R. Dhiman, S. Kimothi, N. Kumar, P. Semwal, V. Gajraj, Synthesis and supercapacitive performances of PPY@MoO3 based nanocomposite material. J. Sol-Gel Sci. Technol. 104, 178–188 (2022). https://doi.org/10.1007/s10971-022-05928-4

    Article  CAS  Google Scholar 

  40. N. Kumar, V. Gajraj, R. Rameshbabu, R.V. Mangalaraja, N.C. Joshi, N. Priyadarshi, Redox additive electrolyte assisted promising pseudocapacitance from strictly 1D and 2D blended structures of MnO2/rGO. Mater. Charact. (2022). https://doi.org/10.1016/j.matchar.2022.111991

    Article  Google Scholar 

  41. S.Y. Lee, J.I. Kim, S.J. Park, Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy 78, 298–303 (2014). https://doi.org/10.1016/j.energy.2014.10.011

    Article  CAS  Google Scholar 

  42. J. Shen, J. Tang, P. Dong, Z. Zhang, J. Ji, R. Baines, M. Ye, Construction of three-dimensional CuCo2S4/CNT/graphene nanocomposite for high performance supercapacitors. RSC Adv. 6, 13456 (2016)

    Article  CAS  Google Scholar 

  43. W.C. Huo, X.L. Liu, Y.S. Yuan, N. Li, T. Lan, X.Y. Liu, Y.X. Zhang, Facile synthesis of manganese cobalt oxide/nickel cobalt oxide composites for high-performance supercapacitors. Front. Chem. 6, 661 (2018). https://doi.org/10.3389/fchem.2018.00661

    Article  CAS  PubMed  Google Scholar 

  44. I.K. Durga, K.V.G. Raghavendra, N.B. Kundakarla, S. Alapati, J.W. Ahn, S. Srinivasa Rao, Facile Synthesis of Coral Reef-Like ZnO/CoS2 nanostructure on nickel foam as an advanced electrode material for high-performance supercapacitors. Energies 14, 4925 (2021). https://doi.org/10.3390/en14164925

    Article  CAS  Google Scholar 

  45. S. Arunpandiyan, A. Raja, S. Bharathi, A. Arivarasan, Fabrication of ZnO/NiO:rGO coated Ni foam binder-free electrode via hydrothermal method for supercapacitor application. J. Alloys Compds. 883, 160791 (2021). https://doi.org/10.1016/j.jallcom.2021.160791

    Article  CAS  Google Scholar 

  46. S. Ramesh, K. Karuppasamy, D. Vikraman, H.M. Yadav, H. Kim, J. Kim, H.S. Kim, Structural and electrochemical properties of NiCo2S4@N-doped graphene oxide/carboxy methyl cellulose interface composite for supercapacitor electrode materials. J. Energy Storage 55, 105728 (2022). https://doi.org/10.1016/j.est.2022.105728

    Article  Google Scholar 

  47. R.R. Palem, S. Ramesh, I. Rabani, G. Shimoga, C. Bathula, H.S. Kim, Y. Seo, H. Kim, S. Lee, Microstructurally assembled transition metal oxides with cellulose nanocrystals for high-performance supercapacitors. J. Energy Storage 50, 104712 (2022). https://doi.org/10.1016/j.est.2022.104712

    Article  Google Scholar 

  48. B. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of nyquist plots for edlc electrodes and devices. J. Phys. Chem. C 122, 194–206 (2018). https://doi.org/10.1021/acs.jpcc.7b10582

    Article  CAS  Google Scholar 

  49. M. Yeganeh, M. Omidi, H. Mortazavi, A. Etemad, M.R. Rostami, M.E. Shafiei, Enhancement routes of corrosion resistance in the steel reinforced concrete by using nanomaterials. Smart Nanocon. Cement-based Mater. (2020). https://doi.org/10.1016/b978-0-12-817854-6.00026-x

    Article  Google Scholar 

  50. Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R.B. Kaner, Flexible quasi-solid-state planar micro-supercapacitorbased on cellular graphene films. Mater. Horiz. (2017). https://doi.org/10.1039/C7MH00441A

    Article  Google Scholar 

  51. K.P. Radha, P. Mahalakshmi, S. Chitra, Magnitude bode plot analysis of solid polymer electrolyte PMMA complexed with adipic acid. Der Pharma Chem. 8, 222–226 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Division of Research & Innovation, Uttaranchal University Dehradun (India) for providing all necessary facilities for carrying out experimental work.

Author information

Authors and Affiliations

Authors

Contributions

1. Naveen Chandra Joshi: Conceptualization, Methodology, Supervision, Writing - Original Draft 2. Prateek Gururani: Formal analysis, Writing - Review & Editing 3. Chetana S: Resources, Software 4. Niraj Kumar: Software, Formal analysis

Corresponding author

Correspondence to Naveen Chandra Joshi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, N.C., Gururani, P., Chetana, S. et al. Synthesis and Electrochemical Properties of Silver Incorporated Biochar Nanocomposites. J Inorg Organomet Polym 33, 1909–1921 (2023). https://doi.org/10.1007/s10904-023-02631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02631-x

Keywords

Navigation