Skip to main content

Advertisement

Log in

Band-Structure Engineering of TiO2 Photocatalyst by AuSe Quantum Dots for Efficient Degradation of Malachite Green and Phenol

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, 0.5, 2.5, 5.0, and 7.5 wt% AuSe QDs/TiO2 nanocomposites (x-AST NCs) were successfully fabricated and characterized. According to the XRD and TEM results, the crystal sizes of the tetragonal anatase TiO2 NPs ranged from 40 to 50 nm, whereas those of the spherical AuSe quantum dots (AuSe QDs) ranged from 3.71 to 9.58 nm. The AST NCs showed higher surface areas in the range of 26.51–42.14 m2/g depending on the AuSe QDs content (0.5–7.5 wt%) compared to the neat TiO2 itself (18.61. m2/g). According to the TGA curves, adding AuSe QDs onto the TiO2 NPs resulted in higher thermal stability reached 530 °C at 7.5-AST NC. The UV/vis-diffuse reflectance spectra of x-AST NCs showed a visible light absorption band, a red shift in the absorption to visible light, and a narrow double energy gap. The AuSe QDs, when decorated onto TiO2, enable precise engineering of the band structure of TiO2 NPs with suitable narrow-band energy, which can be controlled to achieve enhanced charge separation and generation of extra oxidizing species, peroxy radicals, both beneficial for enhancing the photocatalytic performance. As expected, the fabricated x-AST NC NCs displayed excellent photocatalytic performance. The 5.0-AST NC exhibited the highest photocatalytic performance reached complete elimination (100%), which is almost 3-folds in comparison to that of neat TiO2 NPs (33.62% and 33.10%) within 45 and 60 min for MG and phenol, respectively. The 5.0-AST NC was recycled five times and is of high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Dolan, J. Lamontagne, R. Link, M. Hejazi, P. Reed, J. Edmonds, Nat. Commun. 12, 1915 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  2. M. Bilal, D. Barceló, H.M.N. Iqbal, Sci. Total Environ. 800, 149635 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. R.S. Salama, S.A. El-Hakama, S.E. Samraa, S.M. El-Dafrawya, A.I. Ahmeda, Int. J. Mod. Chem 10, 195 (2018)

    CAS  Google Scholar 

  4. M. Fida, P. Li, Y. Wang, S.M.K. Alam, A. Nsabimana, Expo. Heal. (2022). https://doi.org/10.1007/s12403-022-00512-1

    Article  Google Scholar 

  5. K. Bisaria, S. Sinha, R. Singh, H.M.N. Iqbal, Chemosphere 284, 131263 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. R. Salama, S. Abd Elhakim, S. Samra, S. El-Dafrawy, A.A. Ibrahim, A. Ahmed, Delta Univ Sci. J. 5, 321 (2022)

    Google Scholar 

  7. F.T. Alshorifi, D.E. Tobbala, S.M. El-Bahy, M.A. Nassan, R.S. Salama, Catal. Commun. 169, 106479 (2022)

    Article  CAS  Google Scholar 

  8. B. Haspulat Taymaz, R. Taş, H. Kamış, M. Can, Polym. Bull. 78, 2849 (2021)

    Article  CAS  Google Scholar 

  9. E. Yabalak, F. Elneccar, Biomass Convers Biorefinery (2021). https://doi.org/10.1007/s13399-021-01936-6

    Article  Google Scholar 

  10. R. Ma, W. Fang, H. Zhang, J. Sun, H. Su, T. Chen, K. Hu, Aquaculture 514, 734500 (2020)

    Article  CAS  Google Scholar 

  11. M. Verma, M. Mitan, H. Kim, D. Vaya, J. Phys. Chem. Solids 155, 110125 (2021)

    Article  CAS  Google Scholar 

  12. Y. Varun, H. Augustus, N. Panda, I. Sreedhar, S.A. Singh, Int. J. Environ. Sci. Technol. (2022). https://doi.org/10.1007/s13762-022-04038-6

    Article  Google Scholar 

  13. A. Fattahi, M.J. Arlos, L.M. Bragg, R. Liang, N. Zhou, M.R. Servos, J. Environ. Chem. Eng. 9, 104844 (2021)

    Article  CAS  Google Scholar 

  14. S.S. Gaur, H. Jagadeesan, Int. J. Mech. Eng 6, 974 (2021)

    Google Scholar 

  15. M.A. Mannaa, K.F. Qasim, F.T. Alshorifi, S.M. El-Bahy, R.S. Salama, ACS Omega 6, 30386 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Kumari, R. Reeshma, D.S. ArunKumar, S. Meti, M.R. Rahman, Phys. B Condens. Matter 597, 412386 (2020)

    Article  Google Scholar 

  17. G. Nagaraj, A. Irudayaraj, R.L. Josephine, Optik (Stuttg). 179, 889 (2019)

    Article  CAS  Google Scholar 

  18. A. Dandia, P. Saini, M. Sethi, K. Kumar, S. Saini, S. Meena, S. Meena, V. Parewa, Catal. Rev. (2021). https://doi.org/10.1080/01614940.2021.1985866

    Article  Google Scholar 

  19. A.S. Rasal, S. Yadav, A. Yadav, A.A. Kashale, S.T. Manjunatha, A. Altaee, J.-Y. Chang, A.C.S. Appl, Nano Mater. 4, 6515 (2021)

    CAS  Google Scholar 

  20. A.J. Shnoudeh, I. Hamad, R.W. Abdo, L. Qadumii, A.Y. Jaber, H.S. Surchi, S.Z. Alkelany, Biomater Bionanotechnol (Elsevier, The Netherlands, 2019), pp.527–612

    Book  Google Scholar 

  21. L.L.R. Mphahlele, P.A. Ajibade, Int. J. Electrochem. Sci 15, 1206 (2020)

    Article  CAS  Google Scholar 

  22. S. Singh, C. Rao, C.K. Nandi, T.K. Mukherjee, A.C.S. Appl, Nano Mater. 5, 7427 (2022)

    CAS  Google Scholar 

  23. S. Phophayu, P. Pimpang, S. Wongrerkdee, S. Sujinnapram, S. Wongrerkdee, J. Reinf. Plast. Compos. 39, 81 (2020)

    Article  CAS  Google Scholar 

  24. N. Thirugnanam, H. Song, Y. Wu, Chinese J. Catal. 38, 2150 (2017)

    Article  CAS  Google Scholar 

  25. A.A. Alswat, F.T. Al-shorifi, S.L. Ali, Iran. J. Mater. Sci. Eng. 19, 1 (2022)

    Google Scholar 

  26. F.T. Alshorifi, A.A. Alswat, R.S. Salama, Heliyon 8, e09652 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D.M. Oliveira, A.S. Andrada, Cerâmica 65, 170 (2019)

    Article  CAS  Google Scholar 

  28. T. Theivasanthi and M. Alagar, ArXiv Prepr. ArXiv1307.1091 (2013).

  29. F.T. Alshorifi, S.L. Ali, R.S. Salama, J. Inorg. Organomet. Polym. Mater. 32, 3765–3776 (2022)

    Article  CAS  Google Scholar 

  30. B.Y. Hashem, A.A. Alswat, S.L. Ali, N.A. Al-Odaini, F.T. Alshorifi, ACS Omega (2022). https://doi.org/10.1021/acsomega.2c06352

    Article  PubMed  PubMed Central  Google Scholar 

  31. B. Manikandan, K.R. Murali, R. John, Iran. J. Catal. 11, 1 (2021)

    CAS  Google Scholar 

  32. M.S. Gouda, M. Shehab, S. Helmy, M. Soliman, R.S. Salama, J. Energy Storage 61, 106806 (2023)

    Article  Google Scholar 

  33. S.A. Al-Thabaiti, M.M.M. Mostafa, A.I. Ahmed, R.S. Salama, Ceram. Int. 49, 5119 (2023)

    Article  CAS  Google Scholar 

  34. Y.A. Younes, D.A. Kospa, R.S. Salama, A.I. Ahmed, A.A. Ibrahim, Desalination 550, 116377 (2023)

    Article  CAS  Google Scholar 

  35. M.G. Alalm, A. Tawfik, S. Ookawara, J. Water Process Eng. 8, 55 (2015)

    Article  Google Scholar 

  36. G. Liu, M.R. Abukhadra, A.M. El-Sherbeeny, A.M. Mostafa, M.A. Elmeligy, J. Environ. Manage. 254, 109799 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. A.M. Rabie, M.R. Abukhadra, A.M. Rady, S.A. Ahmed, A. Labena, H.S.H. Mohamed, M.A. Betiha, J.-J. Shim, Res. Chem. Intermed. 46, 1955 (2020)

    Article  CAS  Google Scholar 

  38. F.T. Alshorifi, A.A. Alswat, M.A. Mannaa, M.T. Alotaibi, S.M. El-Bahy, R.S. Salama, ACS Omega 6, 30432 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. F. Mohamed, M.R. Abukhadra, M. Shaban, Sci. Total Environ. 640, 352 (2018)

    Article  PubMed  Google Scholar 

  40. S. Vigneshwaran, P. Sirajudheen, P. Karthikeyan, M. Nikitha, K. Ramkumar, S. Meenakshi, J. Hazard. Mater. 406, 124728 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. X. Sun, W. He, X. Hao, H. Ji, W. Liu, Z. Cai, J. Hazard. Mater. 412, 125221 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FTA, TMA, and SLA. The first draft of the manuscript was written by SLA and TMA, and the revised version of the manuscript was edited by FTA and RSS. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fares T. Alshorifi.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alasri, T.M., Ali, S.L., Salama, R.S. et al. Band-Structure Engineering of TiO2 Photocatalyst by AuSe Quantum Dots for Efficient Degradation of Malachite Green and Phenol. J Inorg Organomet Polym 33, 1729–1740 (2023). https://doi.org/10.1007/s10904-023-02604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02604-0

Keywords

Navigation