Skip to main content
Log in

Constructing NaX Nanozeolite Modified Carbon Paste Electrode for Electro-Catalytic Measurement of Gentamicin Sulfate in Pharmaceutical Samples

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Gentamicin sulfate (GNS) as an antibiotic drug is highly polar, non-volatile compound and lacks a UV absorbing chromophore and these properties pose an excessive challenge in the analysis of it for many years. Hence, it is urgent to progress a simple, rapid and low price method for quantification of GNS in medical, chemical and biological fields. This paper dedicated on the building of a novel and sensitive sensor for GNS detection that is created on the decoration of Ni(OH)2 onto nanozeolite NaX modified carbon paste electrode (Ni(OH)2–NaX/CPE). Initially, NaX was synthesized and characterized by numerous practices. Field emission scanning electron microscopy (FESEM) method demonstrated the existence of sphere-shaped nanozeolite NaX with diameter under 100 nm. Cyclic voltammetry investigations displayed that Ni(OH)2–NaX/CPE has impressively improved electro-catalytic oxidation of GNS versus Ni(OH)2/CPE because of mesoporous arrangement of nanozeolite NaX. The amounts of electron transfer coefficient, catalytic rate constant and diffusion coefficient of GNS were found to be 0.77, 1.77 × 104 cm3 mol− 1 s− 1 and 7.02 × 10− 6 cm2 s− 1, respectively. Also, the limits of detection and linear dynamic range were obtained to be 0.82 µM and 2.72–119.60 µM by differential pulse voltammetry method, respectively. The fabricated electrodes were effectively used for quantification of GNS in the pharmaceutical trainings with high accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Pang, S. Zhao, Z. Liu, J. Chen, Z. Yang, Z. He, X. Shen, H. Lei, X. Li, An enhanced immunochromatography assay based on colloidal gold-decorated polydopamine for rapid and sensitive determination of gentamicin in animal-derived food. Food Chem. 387, 132916 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. N. Beloglazova, P. Shmelin, S. Eremin, Sensitive immunochemical approaches for quantitative (FPIA) and qualitative (lateral flow tests) determination of gentamicin in milk. Talanta 149, 217–224 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. M. Khalil, G.A. El-Aziz, Multiwall carbon nanotubes chemically modified carbon paste electrodes for determination of gentamicin sulfate in pharmaceutical preparations and biological fluids. Mater. Sci. Eng. C 59, 838–846 (2016)

    Article  CAS  Google Scholar 

  4. V. Manyanga, K. Kreft, B. Divjak, J. Hoogmartens, E. Adams, Improved liquid chromatographic method with pulsed electrochemical detection for the analysis of gentamicin. J. Chromatogr. 1189(1–2), 347–354 (2008)

    Article  CAS  Google Scholar 

  5. A. Vysakh, S. Abhilash, J. Kuriakose, S.J. Midhun, M. Jyothis, M. Latha, Protective effect of Rotula aquatica Lour against gentamicin induced oxidative stress and nephrotoxicity in Wistar rats. Biomed. Pharmacother. 106, 1188–1194 (2018)

    Article  CAS  Google Scholar 

  6. F. Ikram, A. Qayoom, M.R. Shah, Synthesis of epicatechin coated silver nanoparticles for selective recognition of gentamicin. Sens. Actuators B Chem. 257, 897–905 (2018)

    Article  CAS  Google Scholar 

  7. Y.-F. Tian, G.-H. Chen, L.-H. Guo, X. Guo, X.-Y. Mei, Methodology studies on detection of aminoglycoside residues. Food. Anal. Methods 8(7), 1842–1857 (2015)

    Article  Google Scholar 

  8. C.R. No, On pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official J. Eur. Communities 50, 1–72 (2010)

    Google Scholar 

  9. S. Zhang, Y. Geng, N. Ye, Y. Xiang, A simple and sensitive colorimetric sensor for determination of gentamicin in milk based on lysine functionalized gold nanoparticles. Microchem. J. 158, 105190 (2020)

    Article  CAS  Google Scholar 

  10. A.L.A. Dos Santos, A.C.C. da Silva, Ld.L.F. Lizot, A. Schneider, R.Z. Hahn, Y.F. Meireles, L.R. Pagnussat, J.L. Nonnenmacher, S.R. Hahn, R. Linden, Sensitive determination of gentamicin in plasma using ion-exchange solid-phase extraction followed by UHPLC-MS/MS analysis. Pract. Lab. Med. 26, e00246 (2021)

    Article  Google Scholar 

  11. J. Gubernator, Z. Drulis-Kawa, A. Kozubek, A simply and sensitive fluorometric method for determination of gentamicin in liposomal suspensions. Int. J. Pharm. 327(1–2), 104–109 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. W. Wilson, G. Richard, D. Hughes, Thin-layer chromatographic identification of the gentamicin complex. J. Chromatogr. 78(2), 442–444 (1973)

    Article  CAS  PubMed  Google Scholar 

  13. G. Seidl, H. Nerad, C. Gentamicin, Separation of C1, C1a, C2, C2a and C2b components by HPLC using lsocratic ion-exchange chromatography and post-column derivatisation. Chromatographia 25(3), 169–171 (1988)

    Article  CAS  Google Scholar 

  14. D. Löffler, T.A. Ternes, Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography–electrospray-tandem mass spectrometry. J. Chromatogr. 1000(1–2), 583–588 (2003)

    Article  Google Scholar 

  15. L. Yuan, H. Wei, S.F. Li, Direct determination of gentamicin components by capillary electrophoresis with potential gradient detection. Electrophoresis 26(1), 196–201 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Q. Liu, J. Li, X. Song, M. Zhang, E. Li, F. Gao, L. He, Simultaneous determination of aminoglycoside antibiotics in feeds using high performance liquid chromatography with evaporative light scattering detection. RSC Adv. 7(3), 1251–1259 (2017)

    Article  CAS  Google Scholar 

  17. B. Nigović, M. Sadiković, M. Sertić, Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphine. Talanta 122, 187–194 (2014)

    Article  PubMed  Google Scholar 

  18. S.K. Hassaninejad-Darzi, M. Rahimnejad, Electrocatalytic oxidation of methanol by ZSM-5 nanozeolite-modified carbon paste electrode in alkaline medium. J. Iran. Chem. Soc. 11(4), 1047–1056 (2014)

    Article  CAS  Google Scholar 

  19. A. Walcarius, Mesoporous materials and electrochemistry. Chem. Soc. Rev. 42(9), 4098–4140 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. J.B. Raoof, N. Teymoori, M.A. Khalilzadeh, R. Ojani, A high sensitive electrochemical nanosensor for simultaneous determination of glutathione, NADH and folic acid. Mater. Sci. Eng. C 47, 77–84 (2015)

    Article  CAS  Google Scholar 

  21. B. Nikahd, M.A. Khalilzadeh, Liquid phase determination of bisphenol A in food samples using novel nanostructure ionic liquid modified sensor. J. Mol. Liq. 215, 253–257 (2016)

    Article  CAS  Google Scholar 

  22. M.A. Khalilzadeh, H. Karimi-Maleh, V.K. Gupta, A nanostructure based Electrochemical Sensor for Square Wave Voltammetric determination of l‐Cysteine in the Presence of High Concentration of Folic Acid. Electroanalysis 27(7), 1766–1773 (2015)

    Article  CAS  Google Scholar 

  23. M.A. Khalilzadeh, Z. Arab, High sensitive nanostructure square wave voltammetric sensor for determination of vanillin in food samples. Curr. Anal. Chem. 13(1), 81–86 (2017)

    Article  CAS  Google Scholar 

  24. M.A. Khalilzadeh, H. Karimi-Maleh, Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene monocarboxylic acid modified carbon nanotube paste electrode. Anal. Lett. 43(1), 186–196 (2009)

    Article  Google Scholar 

  25. H. Beitollahi, M.M. Ardakani, B. Ganjipour, H. Naeimi, Novel 2, 2′-[1, 2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Biosens. Bioelectron. 24(3), 362–368 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. P.-S. Ganesh, S.-Y. Kim, Electrochemical sensing interfaces based on novel 2D-MXenes for monitoring environmental hazardous toxic compounds: a concise review. J. Ind. Eng. Chem. 109, 52–67 (2022)

    Article  CAS  Google Scholar 

  27. U. Rajaji, P.-S. Ganesh, S.-Y. Kim, M. Govindasamy, R.A. Alshgari, T.-Y. Liu, MoS2 sphere/2D S-Ti3C2 MXene nanocatalysts on laser-induced graphene electrodes for hazardous aristolochic acid and roxarsone electrochemical detection. ACS Appl. Nano Mater. 5(3), 3252–3264 (2022)

    Article  CAS  Google Scholar 

  28. U. Rajaji, P.-S. Ganesh, S.-M. Chen, M. Govindasamy, S.-Y. Kim, R.A. Alshgari, G. Shimoga, Deep eutectic solvents synthesis of perovskite type cerium aluminate embedded carbon nitride catalyst: high-sensitive amperometric platform for sensing of glucose in biological fluids. J. Ind. Eng. Chem. 102, 312–320 (2021)

    Article  CAS  Google Scholar 

  29. E.C. Okpara, O.E. Fayemi, E.-S.M. Sherif, P.S. Ganesh, B.K. Swamy, E.E. Ebenso, Electrochemical evaluation of Cd2 + and Hg2 + ions in water using ZnO/Cu2ONPs/PANI modified SPCE electrode. Sens. Bio-Sensing Res. 35, 100476 (2022)

    Article  Google Scholar 

  30. K.S. Chadchan, A.B. Teradale, P.S. Ganesh, S.N. Das, Simultaneous sensing of mesalazine and folic acid at poly (murexide) modified glassy carbon electrode surface. Mater. Chem. Phys. 290, 126538 (2022)

    Article  CAS  Google Scholar 

  31. S. Maheshwaran, M. Akilarasan, S.-M. Chen, E. Tamilalagan, E. Keerthiga, A.A. Alothman, K.N. Alqahtani, P.-S. Ganesh, Synthesis of nickel-doped ceria nanospheres for in situ profiling of warfarin sodium in biological media. Bioelectrochemistry 146, 108166 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228, 631–641 (2013)

    Article  CAS  Google Scholar 

  33. B.-Z. Zhan, M.A. White, K.N. Robertson, T.S. Cameron, M. Gharghouri, A novel, organic-additive-free synthesis of nanometer-sized NaX crystals. Chem. Commun. (2001). https://doi.org/10.1039/B102733F

  34. B.-Z. Zhan, M.A. White, M. Lumsden, J. Mueller-Neuhaus, K.N. Robertson, T.S. Cameron, M. Gharghouri, Control of particle size and surface properties of crystals of NaX zeolite. Chem. Mater. 14(9), 3636–3642 (2002)

    Article  CAS  Google Scholar 

  35. S. Eshagh-Nimvari, S.K. Hassaninejad-Darzi, Electro-catalytic performance of nickel hydroxide decorated microporous nanozeolite Beta modified carbon paste electrode for formaldehyde oxidation. Electrocatalysis (2022). https://doi.org/10.1007/s12678-022-00799-3

    Article  Google Scholar 

  36. W.-C. Oh, A.-R. Jung, W.-B. Ko, Characterization and relative photonic efficiencies of a new nanocarbon/TiO 2 composite photocatalyst designed for organic dye decomposition and bactericidal activity. Mater. Sci. Eng.: C 29(4), 1338–1347 (2009)

    Article  CAS  Google Scholar 

  37. H.P. Klug, L.E. Alexander, X-ray diffraction procedures (Willey, New York, 1954)

    Google Scholar 

  38. S.K.H. Nejad-Darzi, A. Samadi-Maybodi, M. Ghobakhluo, Synthesis and characterization of modified ZSM-5 nanozeolite and their applications in adsorption of Acridine Orange dye from aqueous solution. J. Porous Mater. 20(4), 909–916 (2013)

    Article  Google Scholar 

  39. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  40. H. Beitollah, M. Goodarzian, M.A. Khalilzadeh, H. Karimi-Maleh, M. Hassanzadeh, M. Tajbakhsh, Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. J. Mol. Liq. 173, 137–143 (2012)

    Article  CAS  Google Scholar 

  41. A. Samadi-Maybodi, S.K.H. Nejad-Darzi, M.R. Ganjali, H. Ilkhani, Application of nickel phosphate nanoparticles and VSB-5 in the modification of carbon paste electrode for electrocatalytic oxidation of methanol. J. Solid State Electrochem. 17(7), 2043–2048 (2013)

    Article  CAS  Google Scholar 

  42. M. Fleischmann, K. Korinek, D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Interfacial. Electrochem. 31(1), 39–49 (1971)

    Article  CAS  Google Scholar 

  43. H. Bode, K. Dehmelt, J. Witte, Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat.  Electrochim. Acta 11(8), 1079-107N1 (1966)

    Article  CAS  Google Scholar 

  44. S.K. Hassaninejad-Darzi, Fabrication of a non-enzymatic ni (ii) loaded ZSM-5 nanozeolite and multi-walled carbon nanotubes paste electrode as a glucose electrochemical sensor. RSC Adv. 5(128), 105707–105718 (2015)

    Article  CAS  Google Scholar 

  45. R. Ojani, J.B. Raoof, S. Fathi, Electrocatalytic Oxidation of some carbohydrates by Nickel/Poly (o-Aminophenol) modified Carbon Paste Electrode. Electroanalysis 20(16), 1825–1830 (2008)

    Article  CAS  Google Scholar 

  46. S. Azizi, S. Ghasemi, H. Yazdani-Sheldarrei, Synthesis of mesoporous silica (SBA-16) nanoparticles using silica extracted from stem cane ash and its application in electrocatalytic oxidation of methanol. Int. J. Hydrog. Energy 38(29), 12774–12785 (2013)

    Article  CAS  Google Scholar 

  47. A. Samadi-Maybodi, S. Ghasemi, H. Ghaffari-Rad, Application of nano-sized nanoporous zinc 2-methylimidazole metal-organic framework for electrocatalytic oxidation of methanol in alkaline solution. J. Power Sources 303, 379–387 (2016)

    Article  CAS  Google Scholar 

  48. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial. Electrochem 101(1), 19–28 (1979)

    Article  CAS  Google Scholar 

  49. S. Hassaninejad-Darzi, Application of synthesized NaA Nanozeolite as a Novel supported Electrode for the Formaldehyde Electro‐catalytic oxidation. Fuel Cells 18(1), 82–95 (2018)

    Article  CAS  Google Scholar 

  50. A.J. Bard, L.R. Faulkner, Fundamentals and Applications. Electrochemical Methods, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  51. Y. Shu, B. Li, J. Chen, Q. Xu, H. Pang, X. Hu, Facile synthesis of ultrathin nickel–cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation. ACS Appl. Mater. Interfaces 10(3), 2360–2367 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. M.S. Tohidi, A. Nezamzadeh-Ejhieh, A simple, cheap and effective methanol electrocatalyst based of mn (II)-exchanged clinoptilolite nanoparticles. Int. J. Hydrog. Energy 41(21), 8881–8892 (2016)

    Article  CAS  Google Scholar 

  53. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M. Mahjani, Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int. J. Hydrog. Energy 33(16), 4367–4376 (2008)

    Article  CAS  Google Scholar 

  54. S.K. Hassaninejad-Darzi, Encapsulation of a nickel Salen complex in nanozeolite LTA as a carbon paste electrode modifier for electrocatalytic oxidation of hydrazine. Chin. J. Catal. 39(2), 283–296 (2018)

    Article  CAS  Google Scholar 

  55. A. Shrivastava, V.B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2(1), 21–25 (2011)

    Article  Google Scholar 

  56. F.A. Morrison, Obtaining uncertainty measures on slope and intercept of a least squares fit with Excel’s LINEST. Houghton, MI: Department of Chemical Engineering, Michigan Technological University. Retrieved August 6, 2015 (2014)

  57. J. Krzek, H. Woltyńska, U. Hubicka, Determination of gentamicin sulphate in injection solutions by derivative spectrophotometry. Anal. Lett. 42(3), 473–482 (2009)

    Article  CAS  Google Scholar 

  58. A.I. Al-Amoud, B.J. Clark, H. Chrystyn, Determination of gentamicin in urine samples after inhalation by reversed-phase high-performance liquid chromatography using pre-column derivatisation with o-phthalaldehyde. J. Chromatogr. B 769(1), 89–95 (2002)

    Article  CAS  Google Scholar 

  59. M. Laki, K. Ludanyi, M. Hajdu, I. Klebovich, I. Antal, Á. Zahár, M. Szendrői, Determination of Gentamicin released from Orthopedic Carrier System by a Novel HPLC Method. J. Chromatogr. Sci. 49(3), 177–181 (2011)

    Article  CAS  Google Scholar 

  60. S. Gheytani, S. Hassaninejad-Darzi, M. Taherimehr, Formaldehyde Electro-catalytic Oxidation onto Carbon Paste Electrode Modified by MIL-101 (Cr) Nanoparticles. Fuel Cells (2020). https://doi.org/10.1002/fuce.201800161

  61. R. Baronia, J. Goel, V. Kataria, S. Basu, S.K. Singhal, Electro-oxidation of ethylene glycol on PtCo metal synergy for direct ethylene glycol fuel cells: reduced graphene oxide imparting a notable surface of action. Int. J. Hydrog. Energy 44(20), 10023–10032 (2019)

    Article  CAS  Google Scholar 

  62. S.K. Hassaninejad-Darzi, M. Torkamanzadeh, Simultaneous UV-Vis spectrophotometric quantification of ternary basic dye mixtures by partial least squares and artificial neural networks. Water Sci. Technol. (2016). https://doi.org/10.2166/wst.2016.440

  63. S.R. Hosseini, J.-B. Raoof, S. Ghasemi, Z. Gholami, Synthesis of Pt–Cu/poly (o-Anisidine) nanocomposite onto carbon paste electrode and its application for methanol oxidation. Int. J. Hydrog. Energy 40(1), 292–302 (2015)

    Article  CAS  Google Scholar 

  64. M. Mazloum-Ardakani, Z. Alizadeh, Electrochemical Nanosensor based on Functionalized Multi-Walled Carbon Nanotube for determination of Cysteine in the Presence of Paracetamol. J. Nanostruct. 10(2), 258–267 (2020)

    CAS  Google Scholar 

  65. S. Tajik, H. Beitollahi, R. Hosseinzadeh, A. Aghaei Afshar, R.S. Varma, H.W. Jang, M. Shokouhimehr, Electrochemical detection of hydrazine by carbon paste electrode modified with ferrocene derivatives, ionic liquid, and CoS2-carbon nanotube nanocomposite. ACS Omega 6(7), 4641–4648 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. N. Raeisi-Kheirabadi, A. Nezamzadeh-Ejhieh, The Experimental Design Approach in Square-Wave Voltammetric determination of tamoxifen by NiO-CPE. ChemistrySelect 7(44), e202203788 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Research Council of Babol Noshirvani University of Technology.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. 

Author information

Authors and Affiliations

Authors

Contributions

SKH-D conceived of the presented idea. All authors developed the theory and performed the computations and also, verified the analytical methods. SKH-D to investigate and supervised the findings of this work. All experiments were performed by NM that supervised by SKH-D. All authors discussed the results and contributed to the final manuscript. SKH-D wrote the manuscript with support from NM.

Corresponding author

Correspondence to Seyed Karim Hassaninejad-Darzi.

Ethics declarations

Competing Interests

Not applicable. 

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masihpour, N., Hassaninejad-Darzi, S.K. Constructing NaX Nanozeolite Modified Carbon Paste Electrode for Electro-Catalytic Measurement of Gentamicin Sulfate in Pharmaceutical Samples. J Inorg Organomet Polym 33, 1317–1330 (2023). https://doi.org/10.1007/s10904-023-02587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02587-y

Keywords

Navigation