Skip to main content
Log in

Synthesis and Application of Novel Nanomagnetic Catalyst Fe3O4@SiO2@Pr–Gu–Cr–COOH in the Green Multi-component Synthesis of 1-(Benzothiazolylamino)methyl-2-naphthol

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The nanomagnetic core Fe3O4 was functionalized with organic and inorganic entities to generate a novel magnetic nanocatalyst, Fe3O4@SiO2@Pr–Gu–Cr–COOH, which was characterized by various analyses such as FT-IR spectroscopy, thermogravimetric (Bagalkot et al.), SEM, TEM, VSM, and EDX. Its catalyst activity was evaluated in the inherently sustainable multi-component synthesis of 1-(benzothiazolylamino)methyl-2-naphthols, involving various aldehydes, 2-naphthol, and 2-aminobenzothiazolein under solvent-free conditions at 80 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. E. Mosaddegh, F.A. Hosseininasab, A. Hassankhani, Eggshell/Fe3O4 nanocomposite: novel magnetic nanoparticles coated on porous ceramic eggshell waste as an efficient catalyst in the synthesis of 1,8-dioxo-octahydroxanthene. RSC Adv 5, 106561 (2015)

    Article  CAS  Google Scholar 

  2. J. Wang, J. Kim, J. Bu, D. Kim, S.Y. Kim, K.T. Nam, R.S. Varma, H.W. Jang, R. Luque, M. Shokouhimehr, MOF-derived NiFe2O4 nanoparticles on molybdenum disulfide: magnetically reusable nanocatalysts for the reduction of nitroaromatics in aqueous media. J. Ind. Eng. Chem. 107, 428 (2022)

    Article  CAS  Google Scholar 

  3. K. Hong, J.M. Suh, T.-H. Lee, S.H. Cho, S. Ramakrishna, R.S. Varma, H.W. Jang, M. Shokouhimehr, Architecture engineering of nanostructured catalyst via layer-by-layer adornment of multiple nanocatalysts on silica nanorod arrays for hydrogenation of nitroarenes. Nat. Sci. Rep. 12, 1 (2022)

    Google Scholar 

  4. K.I. Kashkouli, M. Torkzadeh-Mahani, E. Mosaddegh, Synthesis and characterization of aminotetrazole-functionalized magnetic chitosan nanocomposite as a novel nanocarrier for targeted gene delivery. Mater. Sci. Eng. C 89, 166 (2018)

    Article  Google Scholar 

  5. R.K. Sharma, S. Dutta, S. Sharma, R. Zboril, R.S. Varma, M.B. Gawande, Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green. Chem. 18, 3184 (2016)

    Article  CAS  Google Scholar 

  6. M. Shokouhimehr, K. Hong, T.H. Lee, C.W. Moon, S.P. Hong, K. Zhang, J.M. Suh, K.S. Choi, R.S. Varma, Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green. Chem. 20, 3809 (2018)

    Article  CAS  Google Scholar 

  7. R.S. Varma, B. Banerjee, Magnetic Nanocatalysis-Synthetic Applications (De Gruyter, Berlin/Boston, 2022), p.454

    Book  Google Scholar 

  8. R.S. Varma, B. Banerjee, Magnetic Nanocatalysis-Industrial Applications (De Gruyter, Berlin, 2022)

    Book  Google Scholar 

  9. R.B. Nasir Baig, R.S. Varma, Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green. Chem. 15, 398 (2013)

    Article  CAS  Google Scholar 

  10. A.L. Morel, S.I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, M. Simonoff, Sonochemical approach to the synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable properties. ACS Nano 2, 847 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Y.S. Kim, Y.H. Kim, Application of ferro-cobalt magnetic fluid for oil sealing. J. Magn. Magn. Mater. 267, 105 (2003)

    Article  CAS  Google Scholar 

  12. F. Sharifianjazi, M. Irani, A. Esmaeilkhanian, L. Bazli, M.S. Asl, H.W. Jang, S.Y. Kim, S. Ramakrishna, M. Shokouhimehr, R.S. Varma, Polymer incorporated magnetic nanoparticles: applications for magnetoresponsive targeted drug delivery. Mater. Sci. Eng. B 272, 115358 (2021)

    Article  CAS  Google Scholar 

  13. O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. ACS Nano 3, 16 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. V.P. Zharov, J.W. Kim, D.T. Curiel, M. Everts, Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 4, 326 (2005)

    Article  Google Scholar 

  15. A. Agarwal, M.A. Mackey, M.A. El-Sayed, R.V. Bellamkonda, Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano 5, 4919 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. S. Gulati, S. Mansi, S. Vijayan, V. Kumar, B. Agarwal, Harikumar, R.S. Varma, Magnetic nanocarriers adorned on graphene: promising contrast-enhancing agents with state-of-art performance in magnetic resonance imaging (MRI) and theranostics. Mater. Adv. 3, 2971 (2022)

    Article  CAS  Google Scholar 

  17. A.R. Hajipour, Z. Khorsandi, M.R. Sarfjoo, R.S. Varma, A Pd/Cu-free magnetic cobalt catalyst for C–N cross coupling reactions: synthesis of abemaciclib and fedratinib. Green. Chem. 23, 5222 (2021)

    Article  Google Scholar 

  18. Z. Bakhtiarzadeh, S. Rouhani, Z. Karimi, S. Rostamnia, T.A.M. Msagati, D. Kim, H.W. Jang, S. Ramakrishna, R.S. Varma, M. Shokouhimehr, Hydrothermal self-sacrificing growth of polymorphous MnO2 on magnetic porous-carbon (Fe3O4@Cg/MnO2): a sustainable nanostructured catalyst for activation of molecular oxygen. Mol. Catal. 509, 111603 (2021)

    Article  CAS  Google Scholar 

  19. M.N. Chen, L.P. Mo, Z.S. Cui, Z.H. Zhang, Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem. 15, 27 (2019)

    Article  Google Scholar 

  20. S. Bai, R. Li, G. u, X. Duan, S. Wang, N.Q. Ren, Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact. Environ. Int. 126, 302 (2019)

    Article  PubMed  Google Scholar 

  21. B. Maleki, O. Reiser, H.J. Choi, SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@DNH(CH2)4SO3H): synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines. Polyhedron 162, 129 (2019)

    Article  CAS  Google Scholar 

  22. L. Weber, The application of multi-component reactions in drug discovery. Curr. Med. Chem. 9, 2085 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. S.L. Schreiber, Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. G. Mohammadi Ziarani, S. Hasani, F. Mohajer, R.S. Varma, F. Rafiee, The molecular diversity of 1H-Indole-3-carbaldehyde derivatives and their role in multicomponent reactions. Top. Curr. Chem. 380, 24 (2022)

    Article  CAS  Google Scholar 

  25. J. Phillips, E. Barrall, Betti reactions of some phenols. J. Org. Chem. 21, 692 (1956)

    Article  CAS  Google Scholar 

  26. J.P. Phillips, The reactions of 8-quinolinol. Chem. Rev. 56, 271 (1956)

    Article  CAS  Google Scholar 

  27. J.B. Littman, W.R. Brode, Condensations of secondary amines with aldehydes and naphthols. J. Am. Chem. Soc. 52, 1655 (1930)

    Article  CAS  Google Scholar 

  28. I. Szatmári, A. Hetényi, L. Lázár, F. Fülöp, Transformation reactions of the Betti base analog aminonaphthols. J. Heterocycl. Chem. 41, 367 (2004)

    Article  Google Scholar 

  29. M. Heydenreich, A. Koch, S. Klod, I. Szatmári, F. Fülöp, E. Kleinpeter, Synthesis and conformational analysis of naphth [1′, 2′: 5, 6][1, 3] oxazino [3, 2-c][1, 3] benzoxazine and naphth [1′, 2′: 5, 6][1, 3] oxazino [3, 4-c][1, 3] benzoxazine derivatives. Tetrahedron 62, 11081 (2006)

    Article  CAS  Google Scholar 

  30. M.C. Van Zandt, M.L. Jones, D.E. Gunn, L.S. Geraci, J.H. Jones, D.R. Sawicki, J. Sredy, J.L. Jacot, A.T. DiCioccio, T. Petrova, A. Mitschler, Discovery of 3-[(4, 5, 7-trifluorobenzothiazol-2-yl) methyl] indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J. Med. Chem. 48, 3141 (2005)

    Article  PubMed  Google Scholar 

  31. D.F. Shi, T.D. Bradshaw, S. Wrigley, C.J. McCall, P. Lelieveld, I. Fichtner, Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl) benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J. Med. Chem 39, 3375 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. C. Rodríguez-Rodríguez, N. Sanchez, A. de Groot, A. Rimola, V. Alvarez-Larena, J. Lloveras, P. Vidal-Gancedo, González-Duarte, Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease. J. Am. Chem. Soc 131, 1436 (2009)

    Article  PubMed  Google Scholar 

  33. S.T. Huang, I.J. Hsei, C. Chen, Synthesis and anticancer evaluation of bis (benzimidazoles), bis (benzoxazoles), and benzothiazoles. Bioorg. Med. Chem 14, 6106 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Y. He, A. Benz, T. Fu, M. Wang, D.F. Covey, C.F. Zorumski, S. Mennerick, Neuroprotective agent riluzole potentiates postsynaptic GABAA receptor function. Neuropharmacology 42, 199 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. V.G. Shirke, Synthesis and antitubercular activity of some new 2-(substituted arylamino)-5, 6-disubstituted/6-substituted benzothiazoles. Indian Drugs 27, 350 (1990)

    CAS  Google Scholar 

  36. H. Suter, H. Zutter, Studien über Benzthiazole als eventuelle orale Antidiabetica. Helv. Chim. Acta 50, 1084–1086 (1967)

    Article  CAS  PubMed  Google Scholar 

  37. P. Jimonet, F. Audiau, M. Barreau, J.C. Blanchard, A. Boireau, Y. Bour, M.A. Coléno, A. Doble, G. Doerflinger, C. Do Huu, M.H. Donat, Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J. Med. Chem 42, 2828 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. W. Aelterman, Y. Lang, B. Willemsens, I. Vervest, S. Leurs, F. De Knaep, Conversion of the laboratory synthetic route of the N-aryl-2-benzothiazolamine R116010 to a manufacturing method. Org. Process. Res. Dev. 5, 467 (2001)

    Article  CAS  Google Scholar 

  39. Z. Kheilkordi, G. Mohammadi Ziarani, A. Badiei, Fe3O4@SiO2@(BuSO3H)3 synthesis as a new efficient nanocatalyst and its application in the synthesis of heterocyclic [3.33] propellane derivatives. Polyhedron 178, 114343 (2020)

    Article  CAS  Google Scholar 

  40. Z. Kheilkordi, G. Mohammadi Ziarani, N. Lashgari, A. Badiei, An efficient method for the synthesis of functionalized 4H-chromenes as optical sensor for detection of Fe3+ in ethanol. Polyhedron 166, 203 (2019)

    Article  CAS  Google Scholar 

  41. G. Mohammadi Ziarani, Z. Kheilkordi, F. Mohajer, A. Badiei, R. Luque, Magnetically recoverable catalysts for the preparation of pyridine derivatives: an overview. RSC Adv. 11, 17456 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Z. Kheilkordi, G. Mohammadi Ziarani, F. Mohajer, A. Badiei, R.S. Varma, Waste-to-wealth transition: Application of natural waste materials as sustainable catalysts in multicomponent reactions. Green Chem. (2022)

  43. S. Mahmoudi-GomYek, D. Azarifar, M. Ghaemi, H. Keypour, M. Mahmoudabadi, Fe3O4‐supported Schiff‐base copper(II) complex: a valuable heterogeneous nanocatalyst for one‐pot synthesis of new pyrano [2,3‐b] pyridine‐3‐carboxamide derivatives. Appl. Organomet. Chem. 33, e4918 (2019)

    Article  Google Scholar 

  44. M. Rajabi-Salek, M.A. Zolfigol, M. Zarei, Synthesis of a novel DABCO-based nanomagnetic catalyst with sulfonic acid tags: application to the synthesis of diverse spiropyrans. Res. Chem. Intermed. 44, 5255 (2018)

    Article  CAS  Google Scholar 

  45. M. Nasrollahzadeh, M. Sajjadi, H.A. Khonakdar, Synthesis and characterization of novel Cu(II) complex coated Fe3O4@SiO2 nanoparticles for catalytic performance. J. Mol. Struct. 1161, 453 (2018)

    Article  CAS  Google Scholar 

  46. A. Hosseinian, H.R. Shaterian, NaHSO4. H2O catalyzed multicomponent synthesis of 1-(Benzothiazolylamino) methyl-2-naphthols under solvent-free conditions phosphorus sulfur silicon. Relat. Elem. 187, 1056 (2012)

    Article  CAS  Google Scholar 

  47. M.T. Maghsoodlou, M. Karima, M. Lashkari, B. Adrom, A green protocol for one-pot three-component synthesis of 1-(benzothiazolylamino) methyl-2-naphthol catalyzed by oxalic acid. J. Iran. Chem. Soc. 14, 329 (2017)

    Article  CAS  Google Scholar 

  48. F. Kamali, F. Shirini, Fe3O4@SiO2–ZrCl2-MNPs: a novel magnetic catalyst for the clean and efficient cascade synthesis of 1‐(benzothiazolylamino) methyl‐2‐naphthol derivatives in the absence of solvent. Appl. Organomet. Chem. 32, e3972 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the research support council of the Alzahra University

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

ZK: Writing an original draft, doing experimental work. GMZ: Project Administration-Lead, Supervision-Lead, Editing-Lead. FM: graphical abstract designer, review Editing, Data checking, correcting, modifying Figures. AB: Editing-Lead, Supervision-Lead. RV: Review Editing.

Corresponding authors

Correspondence to Ghodsi Mohammadi Ziarani or Rajender S. Varma.

Ethics declarations

Conflict of interest

There is no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 130.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheilkordi, Z., Mohammadi Ziarani, G., Mohajer, F. et al. Synthesis and Application of Novel Nanomagnetic Catalyst Fe3O4@SiO2@Pr–Gu–Cr–COOH in the Green Multi-component Synthesis of 1-(Benzothiazolylamino)methyl-2-naphthol. J Inorg Organomet Polym 33, 1028–1036 (2023). https://doi.org/10.1007/s10904-023-02556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02556-5

Keywords

Navigation