Skip to main content
Log in

Effect of Crosslinking Agent on Mesoporous Spherical POSS Hybrid Particles: Synthesis, Characterization and Thermal Stability

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work reports the synthesis of two novel polyhedral oligomeric silsesquioxane (POSS) hybrid particles by investigating the effects of different crosslinking agents on morphology, porosity, chemical structure, crystalline properties, and thermal behavior of the resultant products. The hydrophilic glycerol dimethacrylate and hydrophobic ethylene glycol dimethacrylate (EGDMA) were used as co-monomer and crosslinking agents to obtain novel poly(POSS-co-GDMA) and poly(POSS-co-EGDMA) hybrid spherical microparticles by step-wise Pickering-like seeded polymerization. The crosslinking agent played a key role in specific surface area (SSA), average pore size, and pore volume, characterized by Brunauer–Emmett–Teller and Barrett–Joyner–Halenda analysis. When poly(POSS-co-GDMA) possess 88.0m2/g SSA, poly(POSS-co-EGDMA) has 3.5m2/g. Both particles exhibit a homogenous spherical shape in the polydisperse form and hybrid organosilica structure defined by scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy. The hybrid particles showed an amorphous silica composite character with thermal resistance up to 420 °C, determined by X-ray diffraction and thermogravimetric analysis. The mesoporous hybrid POSS particles could have great potential for many advanced material applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Madbouly, A. Lendlein, Shape-memory polymer composites, in Shape-memory polymers. (Springer, Berlin, 2009), pp.41–95

    Chapter  Google Scholar 

  2. J.D. Lichtenhan, K. Pielichowski, I. Blanco, Polymers 11, 1727 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Shi, J. Yang, M. You, Z. Li, C. He, Polyhedral oligomeric silsesquioxanes (POSS)-based hybrid soft gels: molecular design, material advantages, and emerging applications. ACS Mater. Lett. 2, 296–316 (2020)

    Article  CAS  Google Scholar 

  4. H.W. Milliman, D. Boris, D.A. Schiraldi, Experimental determination of Hansen solubility parameters for select POSS and polymer compounds as a guide to POSS–polymer interaction potentials. Macromolecules 45, 1931–1936 (2012)

    Article  CAS  Google Scholar 

  5. S. Zhang, Q. Zou, L. Wu, Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromol. Mater. Eng. 291, 895–901 (2006)

    Article  CAS  Google Scholar 

  6. X. Wang et al., Fluorinated polyhedral oligomeric silsesquioxanes. RSC Adv. 5, 4547–4553 (2015)

    Article  CAS  Google Scholar 

  7. G. Kibar, D.ŞÖ. Dinç, In-situ growth of Ag on mussel-inspired polydopamine@ poly (M-POSS) hybrid nanoparticles and their catalytic activity. J. Environ. Chem. Eng. 7, 103435 (2019)

    Article  CAS  Google Scholar 

  8. P. Zhang et al., Polydopamine-modified sulfonated polyhedral oligomeric silsesquioxane: an appealing nanofiller to address the trade-off between conductivity and stabilities for proton exchange membrane. J. Membr. Sci. 596, 117734 (2020)

    Article  CAS  Google Scholar 

  9. M. Ahmed, H. Ghanbari, B.G. Cousins, G. Hamilton, A.M. Seifalian, Small calibre polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts: influence of porosity on the structure, haemocompatibility and mechanical properties. Acta Biomater. 7, 3857–3867 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. H. Tunstall-Garcia, B.L. Charles, R.C. Evans, The role of polyhedral oligomeric silsesquioxanes in optical applications. Adv. Photo. Res. (2021). https://doi.org/10.1002/adpr.202000196

    Article  Google Scholar 

  11. M.G. Mohamed et al., Ultrastable porous organic/inorganic polymers based on polyhedral oligomeric silsesquioxane (POSS) hybrids exhibiting high performance for thermal property and energy storage. Microporous Mesoporous Mater. 328, 111505 (2021)

    Article  CAS  Google Scholar 

  12. K. Mishra, G. Pandey, R.P. Singh, Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement. Polym. Test. 62, 210–218 (2017)

    Article  CAS  Google Scholar 

  13. M.T. Gokmen, F.E. Du Prez, Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog. Polym. Sci. 37, 365–405 (2012)

    Article  CAS  Google Scholar 

  14. H.-B. He et al., Fabrication of enrofloxacin imprinted organic–inorganic hybrid mesoporous sorbent from nanomagnetic polyhedral oligomeric silsesquioxanes for the selective extraction of fluoroquinolones in milk samples. J. Chromatogr. A 1361, 23–33 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. S. Gandhi et al., Synthesis of a novel hierarchical mesoporous organic–inorganic nanohybrid using polyhedral oligomericsilsesquioxane bricks. New J. Chem. 38, 2766–2769 (2014)

    Article  CAS  Google Scholar 

  16. M. Seino et al., Low-k periodic mesoporous organosilica with air walls: POSS-PMO. J. Am. Chem. Soc. 133, 18082–18085 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Yin et al., “Open-mouth” mesoporous hollow micro/nano coatings based on POSS/PDMS: fabrication, mechanisms, and anti-icing performance. Part. Part. Syst. Charact. 35, 1800323 (2018)

    Article  Google Scholar 

  18. Z. Wei, X. Luo, L. Zhang, M. Luo, POSS-based hybrid porous materials with exceptional hydrogen uptake at low pressure. Microporous Mesoporous Mater. 193, 35–39 (2014)

    Article  CAS  Google Scholar 

  19. S. Bandehali, F. Parvizian, A. Moghadassi, S.M. Hosseini, High water permeable PEI nanofiltration membrane modified by L-cysteine functionalized POSS nanoparticles with promoted antifouling/separation performance. Sep. Purif. Technol. 237, 116361 (2020)

    Article  CAS  Google Scholar 

  20. X. Yang et al., The preparation and chemical structure analysis of novel POSS-based porous materials. Materials 12, 1954 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Hao et al., Low dielectric and high performance of epoxy polymer via grafting POSS dangling chains. Eur. Polym. J. (2022). https://doi.org/10.1016/j.eurpolymj.2022.111313

    Article  Google Scholar 

  22. C. Zhang et al., Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. J. Am. Chem. Soc. 120, 8380–8391 (1998)

    Article  CAS  Google Scholar 

  23. W. Chaikittisilp et al., Porous siloxane–organic hybrid with ultrahigh surface area through simultaneous polymerization–destruction of functionalized cubic siloxane cages. J. Am. Chem. Soc. 133, 13832–13835 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. H. Guo et al., Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl. Mater. Interfaces 3, 546–552 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. F. Alves, P. Scholder, I. Nischang, Conceptual design of large surface area porous polymeric hybrid media based on polyhedral oligomeric silsesquioxane precursors: preparation, tailoring of porous properties, and internal surface functionalization. ACS Appl. Mater. Interfaces 5, 2517–2526 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Ou, Z. Zhang, H. Lin, J. Dong, H. Zou, Polyhedral oligomeric silsesquioxanes as functional monomer to prepare hybrid monolithic columns for capillary electrochromatography and capillary liquid chromatography. Anal. Chim. Acta 761, 209–216 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. J. Bai et al., Synthesis and characterization of paclitaxel-imprinted microparticles for controlled release of an anticancer drug. Mater. Sci. Eng. C 92, 338–348 (2018)

    Article  CAS  Google Scholar 

  28. J. Bai et al., Synthesis and characterization of molecularly imprinted polymer microspheres functionalized with POSS. Appl. Surf. Sci. 511, 145506 (2020)

    Article  Google Scholar 

  29. Y.-Y. Deng et al., Monodispersed hybrid microparticles based on polyhedral oligomeric silsesquioxane with good UV resistance and high thermal stability: from organic to inorganic. Polymer 178, 121609 (2019)

    Article  CAS  Google Scholar 

  30. D. Han et al., Facile construction of porous magnetic nanoparticles from ferrocene-functionalized polyhedral oligomeric silsesquioxane-containing microparticles for dye adsorption. Ind. Eng. Chem. Res. 59, 9532–9540 (2020)

    Article  CAS  Google Scholar 

  31. D. Han et al., Engineering the surface pattern of microparticles: from raspberry-like to golf ball-like. ACS Appl. Mater. Interfaces. 13, 31215–31225 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. G. Kibar, U. Çalışkan, E.Y. Erdem, B. Çetin, One-pot synthesis of organic–inorganic hybrid polyhedral oligomeric silsesquioxane microparticles in a double-zone temperature controlled microfluidic reactor. J. Polym. Sci. Part A 57, 1396–1403 (2019)

    Article  CAS  Google Scholar 

  33. G. Kibar, Spherical shape poly (M-POSS) micro/nano hybrid latex particles: one-step synthesis and characterization. J. Appl. Polym. Sci. 137, 49241 (2020)

    Article  CAS  Google Scholar 

  34. K.-J. Kim, Nano/micro spherical poly (methyl methacrylate) particle formation by cooling from polymer solution. Powder Technol. 154, 156–163 (2005)

    Article  CAS  Google Scholar 

  35. B. Elmas, M. Tuncel, G. Yalçın, S. Şenel, A. Tuncel, Synthesis of uniform, fluorescent poly (glycidyl methacrylate) based particles and their characterization by confocal laser scanning microscopy. Colloids Surf. Physicochem. Eng. Aspects 269, 125–134 (2005)

    Article  CAS  Google Scholar 

  36. G. Kibar, A. Tuncel, Synthesis and characterization of monodisperse-porous, zwitterionic microbeads. Polym. Bull. 73, 1939–1950 (2016)

    Article  CAS  Google Scholar 

  37. G. Kibar, A. Tuncel, Gold-nanoparticle decorated monosized magnetic polymer based catalyst: reduction of 4-nitrophenol. J. Inorg. Organomet. Polym Mater. 28, 2249–2257 (2018)

    Article  CAS  Google Scholar 

  38. A. Tuncel, M. Tuncel, B. Ergun, C. Alagöz, T. Bahar, Carboxyl carrying-large uniform latex particles. Colloids Surf. A 197, 79–94 (2002)

    Article  CAS  Google Scholar 

  39. C. Cheng, J. Vanderhoff, M. El-Aasser, Monodisperse porous polymer particles: formation of the porous structure. J. Polym. Sci. Part A 30, 245–256 (1992)

    Article  CAS  Google Scholar 

  40. H. Ma, M. Luo, S. Sanyal, K. Rege, L.L. Dai, The one-step pickering emulsion polymerization route for synthesizing organic-inorganic nanocomposite particles. Materials 3, 1186–1202 (2010)

    Article  CAS  PubMed Central  Google Scholar 

  41. H. Jiang, Y. Sheng, T. Ngai, Pickering emulsions: versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 49, 1–15 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Y. Liu, Y. Huang, L. Liu, Influences of monosilanolisobutyl-poss on thermal stability of polymethylsilxoane. J. Mater. Sci. 42, 5544–5550 (2007)

    Article  CAS  Google Scholar 

  43. O. Toepfer, D. Neumann, N.R. Choudhury, A. Whittaker, J. Matisons, Organic–inorganic poly (methyl methacrylate) hybrids with confined polyhedral oligosilsesquioxane macromonomers. Chem. Mater. 17, 1027–1035 (2005)

    Article  CAS  Google Scholar 

  44. M. Sobiesiak, Analysis of structure and properties of DVB–GMA based porous polymers. Adsorption 25, 257–266 (2019)

    Article  CAS  Google Scholar 

  45. F.R. Mansour, S. Waheed, B. Paull, F. Maya, Porogens and porogen selection in the preparation of porous polymer monoliths. J. Sep. Sci. 43, 56–69 (2020)

    Article  CAS  PubMed  Google Scholar 

  46. B.X. Fu et al., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polym. Int. 49, 437–440 (2000)

    Article  CAS  Google Scholar 

  47. Y. Liu, Y. Huang, L. Liu, Thermal stability of POSS/methylsilicone nanocomposites. Compos. Sci. Technol. 67, 2864–2876 (2007)

    Article  CAS  Google Scholar 

  48. G. Kibar, Epoxy Functional Porous POSS Microparticle Synthesis. Hacett. J. Biol. Chem. 50, 359–366 (2022)

    Google Scholar 

  49. H. Sirin, D. Turan, G. Ozkoc, S. Gurdag, POSS reinforced PET based composite fibers:“effect of POSS type and loading level.” Compos. B Eng. 53, 395–403 (2013)

    Article  CAS  Google Scholar 

  50. J.G. Croissant, Y. Fatieiev, A. Almalik, N.M. Khashab, Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthcare Mater. 7, 1700831 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the Turkish Fulbright Commission for a Fulbright Postdoctoral Scholarship and The Scientific and Technological Research Council of Turkey (TUBITAK 2219 Postdoctoral Award #1059B191801017) for Dr. Gunes Kibar.

Funding

This work was supported by Turkish Fulbright Commission, Fulbright Postdoctoral Scholarship, The Scientific and Technological Research Council of Turkey, TUBITAK 2219 Postdoctoral Award #1059B191801017

Author information

Authors and Affiliations

Authors

Contributions

Author Statement Gunes Kibar: Conceptualization, Investigation, Formal analysis, Resources, Project administration, Writing - Original Draft

Corresponding author

Correspondence to Gunes Kibar.

Ethics declarations

Conflict of interest

The author declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 793 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibar, G. Effect of Crosslinking Agent on Mesoporous Spherical POSS Hybrid Particles: Synthesis, Characterization and Thermal Stability. J Inorg Organomet Polym 33, 831–840 (2023). https://doi.org/10.1007/s10904-023-02540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02540-z

Keywords

Navigation