Skip to main content
Log in

Preparation of In Situ ZIF-9 Grown on Sodium Alginate/Polyvinyl Alcohol Hydrogels for Enhancing Cu (II) Adsorption from Aqueous Solutions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Metal–organic framework materials(ZIF-9) were loaded on Sodium alginate/polyvinyl(PVA/SA) hydrogel by in situ growth method for adsorption of heavy metal Cu (II). The structure of hydrogels composited with MOFs and polymers was designed to improve the poor mechanical properties of natural polymer gel materials and the inconvenience of powdered MOFs materials in practical applications. The adsorption results showed that the optimum adsorption process of Cu (II) pH was 5.0. The adsorption kinetics and isotherm suggest that the adsorption process follows the Freundlich isotherm and the pseudo-second-order models. The experimental maximum adsorption capacity was 98.98 mg/g, 2.6 times and 1.5 times higher than ordinary SA and PVA/SA hydrogel spheres. Synthesized hydrogel spheres were characterized by FT-IR, SEM, XRD, and XPS, which confirmed that MOF materials have grown in situ on PVA/SA hydrogel spheres. More importantly, PVA/SA@ZIF-9 exhibited exceptional mechanical stability and showed excellent recycling capability in the cyclic adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.W. Jung, S.Y. Lee, J.W. Choi et al., A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: adsorption behavior and mechanisms for the removal of copper(II) from aqueous media [J]. Chem. Eng. J. 369, 529–541 (2019). https://doi.org/10.1016/j.cej.2019.03.102

    Article  CAS  Google Scholar 

  2. T. Liu, Z. Chen, Z. Li et al., Rapid separation and efficient removal of Cd based on enhancing surface precipitation by carbonate-modified biochar. ACS Omega 28(6), 18253–18259 (2021). https://doi.org/10.1021/acsomega.1c02126

    Article  CAS  Google Scholar 

  3. C. Liu, T. Wu, P.C. Hsu et al., Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode. ACS Nano 13(6), 6431–6437 (2019). https://doi.org/10.1021/acsnano.8b09301

    Article  CAS  PubMed  Google Scholar 

  4. L. Yang, Y.J. Zhu, G. He et al., Multifunctional photocatalytic filter paper based on ultralong nanowires of the calcium-alendronate complex for high-performance water purification. ACS Appl. Mater. Interfaces 14(7), 9464–9479 (2022). https://doi.org/10.1021/acsami.1c23180

    Article  CAS  PubMed  Google Scholar 

  5. M. Khan, A. Akhtar, S.A. Nabi, Kinetics and thermodynamics of alkaline earth and heavy metal ion exchange under particle diffusion controlled phenomenon using polyaniline-sn(iv)iodophosphate nanocomposite. J. Chem. Eng. Data 59(8), 2677–2685 (2014). https://doi.org/10.1021/je500523n

    Article  CAS  Google Scholar 

  6. A. Mfm, B. Amgm, C. Mk et al., Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: batch and column studies. Alex. Eng. J. (2022). https://doi.org/10.1016/j.aej.2021.09.041

    Article  Google Scholar 

  7. H. Es-Sahbany, R. Hsissou, M. Hachimi et al., Investigation of the adsorption of heavy metals (Cu Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mater. Today (2021). https://doi.org/10.1016/j.matpr.2020.12.1100

    Article  Google Scholar 

  8. S. Liu, S. Zhang, M. Fan et al., High-efficiency adsorption of various heavy metals by tea residue biochar loaded with nanoscale zero-valent iron. Environ. Prog. Sustainable Energy (2021). https://doi.org/10.1002/ep.13706

    Article  Google Scholar 

  9. J. Kaur, P. Sengupta, S. Mukhopadhyay, Critical review of bioadsorption on modified cellulose and removal of divalent heavy metals (Cd, Pb, and Cu). Ind. Eng. Chem. Res. 61(5), 1921–1954 (2022). https://doi.org/10.1021/acs.iecr.1c04583

    Article  CAS  Google Scholar 

  10. Q. Zuo, H. Zheng, P. Zhang et al., Functionalized activated carbon fibers by hydrogen peroxide and polydopamine for efficient trace lead removal from drinking water. Langmuir 38(1), 253–263 (2022). https://doi.org/10.1021/acs.langmuir.1c02459

    Article  CAS  PubMed  Google Scholar 

  11. Z. Zhao, Y. Song, P. Phanlavong et al., Efficient heavy metal removal from water by polydopamine confined ZrO2 nanocrystals with improvements in nanoparticles utilization and ion diffusion. ACS EST Eng. (2022). https://doi.org/10.1021/acsestengg.1c00370

    Article  Google Scholar 

  12. S. Xue, J. Fan, K. Wan et al., Calcium-modified Fe3O4 nanoparticles encapsulated in humic acid for the efficient removal of heavy metals from wastewater. Langmuir 37, 10994–11007 (2021). https://doi.org/10.1021/acs.langmuir.1c01491

    Article  CAS  PubMed  Google Scholar 

  13. T. Jayaramudu, R.D. Pyarasani, A. Akbari-Fakhrabadi et al., Synthesis of gum acacia capped polyaniline-based nanocomposite hydrogel for the removal of methylene blue dye. J. Polym. Environ. 29, 2447–2462 (2021). https://doi.org/10.1007/s10924-021-02066-w

    Article  CAS  Google Scholar 

  14. Y.Z. Yan, Q.D. An, Z.Y. Xiao et al., Flexible core-shell/bead-like alginate@PEI with exceptional adsorption capacity, recycling performance toward batch and column sorption of Cr(VI). Chem. Eng. J. 313, 475–486 (2017). https://doi.org/10.1016/j.cej.2016.12.099

    Article  CAS  Google Scholar 

  15. H.J. Choi, Assessment of the adsorption kinetics, equilibrium and thermodynamic for Pb(II) removal using alow-costhybrid biowaste adsorbent eggshell/coffeeground/sericite. Water Environ. Res. 91(12), 1600–1612 (2019). https://doi.org/10.1002/wer.1158

    Article  CAS  PubMed  Google Scholar 

  16. W. Zhang, J. Song, Q. He et al., Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J. Hazard. Mater. 384, 121445 (2019). https://doi.org/10.1016/j.jhazmat.2019.121445

    Article  CAS  PubMed  Google Scholar 

  17. H. Ren, Z. Gao et al., Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanis. Carbohyd. Polym. (2016). https://doi.org/10.1016/j.carbpol.2015.11.002

    Article  Google Scholar 

  18. L. Yuan, Y. Wu, Q.S. Gu et al., Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. Int. J. Biol. Macromol. 96, 569–577 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.058

    Article  CAS  PubMed  Google Scholar 

  19. Y. Li, S.J. Liu, F.M. Chen et al., High-strength apatite/attapulgite/alginate composite hydrogel for effective adsorption of methylene blue from aqueous solution. J. Chem. Eng. Data 64(12), 5469–5477 (2019). https://doi.org/10.1021/acs.jced.9b00616

    Article  CAS  Google Scholar 

  20. P. Cheng, C. Wang, Y.V. Kaneti et al., Practical MOF nanoarchitectonics: new strategies for enhancing the processability of mofs for practical applications. Langmuir 36(16), 4231–4249 (2020). https://doi.org/10.1021/acs.langmuir.0c00236

    Article  CAS  PubMed  Google Scholar 

  21. M.R. Lohe, M. Rose, S. Kaskel, Metal-organic framework (MOF) aerogels with high micro-and macroporosity. Chem. Commun. 40, 6056–6058 (2009). https://doi.org/10.1039/b910175f

    Article  CAS  Google Scholar 

  22. A.S. Eltaweil, I.M. Mamdouh, E.M. Abd El-Monaem et al., Highly efficient removal for methylene blue and Cu2+ onto UiO-66 metal-organic framework/carboxylated graphene oxide-incorporated sodium alginate beads. ACS Omega 6(36), 23528–23541 (2021). https://doi.org/10.1021/acsomega.1c03479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Cao, Y. Su, Y. Liu et al., Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation. J. Membr. Sci. 566, 268–277 (2018). https://doi.org/10.1016/j.memsci.2018.08.068

    Article  CAS  Google Scholar 

  24. He. Zhu, Qi. Zhang, Shiping Zhu, Alginate hydrogel: a shapeable and versatile platformfor in-situ preparation of MOF-polymer composites. ACS Appl. Mater. Interfaces. 8, 17395–17401 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. D. Qian, L. Bai, Y. Wang et al., A bifunctional alginate-based composite hydrogel with synergistic pollutant adsorption and photocatalytic degradation performance. Ind. Eng. Chem. Res. 58(29), 13133–13144 (2019). https://doi.org/10.1021/acs.iecr.9b01709

    Article  CAS  Google Scholar 

  26. O. Maan, P. Song, N. Chen et al., An in situ procedure for the preparation of zeolitic imidazolate framework-8 polyacrylamide hydrogel for adsorption of aqueous pollutants. Adv. Mater. Interfaces (2019). https://doi.org/10.1002/admi.201801895

    Article  Google Scholar 

  27. H. Zhu, Q. Zhang, S. Zhu, Alginate hydrogel: a shapeable and versatile platform for in situ preparation of metal-organic framework-polymer composites. ACS Appl Mater Interfaces 8, 17395 (2016). https://doi.org/10.1021/acsami.6b04505

    Article  CAS  PubMed  Google Scholar 

  28. W. Ren, J. Gao, C. Lei et al., Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem. Eng. J. -Lausanne- (2018). https://doi.org/10.1016/j.cej.2018.05.143

    Article  Google Scholar 

  29. O.H. Kwon, J.O. Kim, D.W. Cho et al., Adsorption of As(III), As(V) and Cu(II) on zirconium oxide immobilized alginate beads in aqueous phase [J]. Chemosphere 160, 126–133 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.074

    Article  CAS  PubMed  Google Scholar 

  30. T. Hu, Q. Liu, T. Gao et al., Facile preparation of tannic acid–poly(vinyl alcohol)/sodium alginate hydrogel beads for methylene blue removal from simulated solution. ACS Omega 3(7), 7523–7531 (2018). https://doi.org/10.1021/acsomega.8b00577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M.A. Morsy, M.A. Al-Khaldi, A. Suwaiyan, Normal vibrational mode analysis and assignment of benzimidazole by ab initio and density functional calculations and polarized infrared and raman spectroscopy. J. Phys. Chem. A 106(40), 9196–9203 (2002). https://doi.org/10.1021/jp0256948

    Article  CAS  Google Scholar 

  32. X. Zhang, X. Lin, Y. He et al., Phenolic hydroxyl derived copper alginate microspheres as superior adsorbent for effective adsorption of tetracycline. Int. J. Biol. Macromol. 136, 445–459 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.165

    Article  CAS  PubMed  Google Scholar 

  33. X. Zhu, Y. Liu, C. Zhou et al., A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 77, 627–636 (2014). https://doi.org/10.1016/j.carbon.2014.05.067

    Article  CAS  Google Scholar 

  34. X. Xu, X.Y. Jiang, F.P. Jiao et al., Tunable assembly of porous three-dimensional graphene oxide-corn zein composites with strong mechanical properties for adsorption of rare earth elements. J. Taiwan Instit. Chem. Eng. 85, 106–114 (2018). https://doi.org/10.1016/j.jtice.2017.12.024

    Article  CAS  Google Scholar 

  35. C. Jin, X. Zhang et al., Thiol-Ene synthesis of cysteine-functionalized lignin for the enhanced adsorption of Cu(II) and Pb(II). Ind. Eng. Chem. Res. 57(23), 7872–7880 (2018). https://doi.org/10.1021/acs.iecr.8b00823

    Article  CAS  Google Scholar 

  36. X. Chen, G. Chen, L. Chen et al., Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 102(19), 8877–8884 (2011). https://doi.org/10.1016/j.biortech.2011.06.078

    Article  CAS  PubMed  Google Scholar 

  37. S. Periyasamy, N. Viswanathan, Hydrothermal synthesis of melamine-functionalized covalent organic polymer-blended alginate beads for iron removal from water [J]. J. Chem. Eng. Data 64, 2280–2291 (2019). https://doi.org/10.1021/acs.jced.8b01085

    Article  CAS  Google Scholar 

  38. N. Wang, X. Xu, H. Li et al., Preparation and application of a xanthate-modified thiourea chitosan sponge for the removal of Pb(II) from aqueous solutions. Ind. Eng. Chem. Res. 55(17), 4960–4968 (2016). https://doi.org/10.1021/acs.iecr.6b00694

    Article  CAS  Google Scholar 

  39. T.A. Nguyen, B.T. Dang, H. Le et al., Thiosemicarbazone-modified cellulose: synthesis, characterization, and adsorption studies on Cu(II) removal. ACS Omega 5(24), 14481–14493 (2020). https://doi.org/10.1021/acsomega.0c01129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Z. Peixia et al., In-situ growth of polyvinylpyrrolidone modified Zr-MOFs thin-film nanocomposite (TFN) for efficient dyes removal. Composites Part B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.107208

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Qinghai Province Thousand Talents Program funded project.

Author information

Authors and Affiliations

Authors

Contributions

GZ: Experimentalize, Data collection, Writing-original draft. GY: Investigation, Aid with Synthesis and Preliminary Characterization. HC: Data curation, Formal analysis. HF: Supervision, Writing-review & editing.

Corresponding author

Correspondence to Hua Fu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Chen, H., Yang, G. et al. Preparation of In Situ ZIF-9 Grown on Sodium Alginate/Polyvinyl Alcohol Hydrogels for Enhancing Cu (II) Adsorption from Aqueous Solutions. J Inorg Organomet Polym 32, 4576–4588 (2022). https://doi.org/10.1007/s10904-022-02463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02463-1

Keywords

Navigation