Skip to main content
Log in

Enhanced Removal of Low Concentrations of Anti-inflammatory Drugs in Water Using Fe-MOF Derived Carbon Treated by Acidic Leaching: Characterization and Performance

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, the MIL-101(Fe) derived carbon prepared by direct carbonization under N2 atmosphere followed by acidic treatment (TC-MIL-101(Fe)) was evaluated as an adsorbent of low concentrations of naproxen (NPX) in an aqueous solution. The adsorption performance of TC-MIL-101(Fe) was compared with its analog without acidic treatment (C-MIL-101(Fe) and pristine MIL-101(Fe). The prepared materials were characterized by X-ray diffraction (XRD), nitrogen physisorption, scanning electron microscopy with energy dispersive spectroscopy (SEM–EDS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TC-MIL-101(Fe) improved its textural and physicochemical properties. The increase of specific surface area, broad pore size distribution, and low residual level of Fe particles, and graphitization index turned this material into a potential adsorbent of pharmaceutical compounds. The NPX adsorption experiments onto TC-MIL-101(Fe) showed complete removal in 15 min, and 63.30 mg/g adsorption capacity in equilibrium compared to 22.94, and 22.72 mg/g achieved using pristine MIL-101(Fe) and C-MIL-101(Fe). The NPX adsorption using MIL-101(Fe) and their derived carbon materials was associated with a pseudo-second order (R2 ≥ 0.995) and Langmuir (R2 ≥ 0.938) models. Moreover, the thermodynamic parameters were calculated, suggesting the spontaneous and exothermic adsorption mechanism. These results evidenced the potential application of TC-MIL-101(Fe) adsorbent associated with its good textural properties and modulable porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Ding, X. Cai, H.L. Jiang, Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019). https://doi.org/10.1039/c9sc03916c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. V.V. Butova, M.A. Soldatov, A.A. Guda, K.A. Lomachenko, C. Lamberti, Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 85, 280–307 (2016). https://doi.org/10.1070/RCR4554

    Article  CAS  Google Scholar 

  3. W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013). https://doi.org/10.1039/c2ta00278g

    Article  CAS  Google Scholar 

  4. T. Rasheed, M. Bilal, A.A. Hassan, F. Nabeel, R.N. Bharagava, L.F. Romanholo Ferreira, H.N. Tran, H.M.N. Iqbal, Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ. Res. 185, 109436 (2020). https://doi.org/10.1016/j.envres.2020.109436

    Article  CAS  PubMed  Google Scholar 

  5. B. Liu, K. Vikrant, K.H. Kim, V. Kumar, S.K. Kailasa, Critical role of water stability in metal-organic frameworks and advanced modification strategies for the extension of their applicability. Environ. Sci. Nano 7, 1319–1347 (2020). https://doi.org/10.1039/c9en01321k

    Article  CAS  Google Scholar 

  6. S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24, 464–470 (2012). https://doi.org/10.1021/cm202554j

    Article  CAS  Google Scholar 

  7. K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6, 5887–5903 (2016). https://doi.org/10.1021/acscatal.6b01222

    Article  CAS  Google Scholar 

  8. F. Maya, C. Palomino Cabello, R.M. Frizzarin, J.M. Estela, G. Turnes Palomino, V. Cerdà, Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. Trends Anal. Chem. 90, 142–152 (2017). https://doi.org/10.1016/j.trac.2017.03.004

    Article  CAS  Google Scholar 

  9. Y. Liu, Z. Gao, R. Wu, Z. Wang, X. Chen, T.W.D. Chan, Magnetic porous carbon derived from a bimetallic metal–organic framework for magnetic solid-phase extraction of organochlorine pesticides from drinking and environmental water samples. J. Chromatogr. A 1479, 55–61 (2017). https://doi.org/10.1016/j.chroma.2016.12.014

    Article  CAS  PubMed  Google Scholar 

  10. J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015). https://doi.org/10.1021/ja511539a

    Article  CAS  PubMed  Google Scholar 

  11. A. Farisabadi, M. Moradi, S. Hajati, M.A. Kiani, J.P. Espinos, Controlled thermolysis of MIL-101(Fe, Cr) for synthesis of FexOy/porous carbon as negative electrode and Cr2O3/porous carbon as positive electrode of supercapacitor. Appl. Surf. Sci. 469, 192–203 (2019). https://doi.org/10.1016/j.apsusc.2018.11.053

    Article  CAS  Google Scholar 

  12. A. Mestre, M. Galhetas, M. Andrade, Micropore size distribution of activated carbons: a key factor for a deeper understanding of the adsorption mechanism of pharmaceuticals. Boletín Del Grup. Español Del Carbón. (2016) 22–27.

  13. D. Salazar-Beltrán, C.P. Cabello, J.L. Guzmán-Mar, L. Hinojosa-Reyes, G.T. Palomino, F. Maya, Nanoparticle@metal-organic frameworks as a template for hierarchical porous carbon sponges. Chemistry 24, 13450–13456 (2018). https://doi.org/10.1002/chem.201802545

    Article  CAS  PubMed  Google Scholar 

  14. C. Palomino Cabello, M.F.F. Picó, F. Maya, M. del Rio, G. Turnes Palomino, UiO-66 derived etched carbon/polymer membranes: high-performance supports for the extraction of organic pollutants from water. Chem. Eng. J. 346, 85–93 (2018). https://doi.org/10.1016/j.cej.2018.04.019

    Article  CAS  Google Scholar 

  15. M. Valsecia, Analgésicos antipiréticos y antiinflamatorios no esteroides (AINEs), Jano. (2010) 112–132. http://med.unne.edu.ar/catedras/farmacologia/temas_farma/volumen4/cap7_aines.pdf.

  16. A. Peña-Álvarez, A. Castillo-Alanís, Identificación y cuantificación de contaminantes emergentes en aguas residuales por microextracción en fase sólida-cromatografía de gases-espectrometría de masas (MEFS-CG-EM). Tip 18, 29–42 (2015). https://doi.org/10.1016/j.recqb.2015.05.003

    Article  Google Scholar 

  17. L.I. Castro-Pastrana, M.I. Baños-Medina, M. Argelia López-Luna, B.L. Torres-García, Ecofarmacovigilancia en México: perspectivas para su implementación Ecopharmacovigilance in Mexico: prospects of its implementation. Rev Mex Cienc Farm. 46(3), 16–40 (2015)

    Google Scholar 

  18. V.C. Moreno-Ortiz, J.M. Martínez-Núñez, J. Kravzov-Jinich, L.A. Pérez-Hernández, C. Moreno-Bonett, M. Altagracia-Martínez, Los medicamentos de receta de origen sintético y su impacto en el medio ambiente. Rev. Mex. Ciencias Farm. 44, 17–29 (2013)

    CAS  Google Scholar 

  19. G. Peña-Velasco, L. Hinojosa-Reyes, M. Escamilla-Coronado, G. Turnes-Palomino, C. Palomino-Cabello, J.L. Guzmán-Mar, Iron metal-organic framework supported in a polymeric membrane for solid-phase extraction of anti-inflammatory drugs. Anal. Chim. Acta 1136, 157–167 (2020). https://doi.org/10.1016/j.aca.2020.09.049

    Article  CAS  PubMed  Google Scholar 

  20. K. Kwak, K. Ji, Y. Kho, P. Kim, J. Lee, J. Ryu, K. Choi, Chronic toxicity and endocrine disruption of naproxen in freshwater waterfleas and fish, and steroidogenic alteration using H295R cell assay. Chemosphere 204, 156–162 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.035

    Article  CAS  PubMed  Google Scholar 

  21. T. Segakweng, N.M. Musyoka, J. Ren, P. Crouse, H.W. Langmi, Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application. Res. Chem. Intermed. 42, 4951–4961 (2016). https://doi.org/10.1007/s11164-015-2338-1

    Article  CAS  Google Scholar 

  22. H. Khazri, I. Ghorbel-Abid, R. Kalfat, M. Trabelsi-Ayadi, Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study. Appl. Water Sci. 7, 3031–3040 (2017). https://doi.org/10.1007/s13201-016-0414-3

    Article  CAS  Google Scholar 

  23. P.W. Seo, B.N. Bhadra, I. Ahmed, N.A. Khan, S.H. Jhung, Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: remarkable adsorbents with hydrogen-bonding abilities. Sci. Rep. 6, 1–11 (2016). https://doi.org/10.1038/srep34462

    Article  CAS  Google Scholar 

  24. P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261, 52–60 (2010). https://doi.org/10.1016/j.desal.2010.05.032

    Article  CAS  Google Scholar 

  25. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 273, 425–434 (2019). https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  26. L. Yang, Y. Bai, H. Zhang, J. Geng, Z. Shao, B. Yi, Nitrogen-doped porous carbon derived from Fe-MIL nanocrystals as an electrocatalyst for efficient oxygen reduction. RSC Adv. 7, 22610–22618 (2017). https://doi.org/10.1039/c6ra27834e

    Article  CAS  Google Scholar 

  27. S. Peng, S. Wang, G. Hao, C. Zhu, Y. Zhang, X. Lv, Y. Hu, W. Jiang, Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J. Magn. Magn. Mater. 487, 165306 (2019). https://doi.org/10.1016/j.jmmm.2019.165306

    Article  CAS  Google Scholar 

  28. Q. Xie, Y. Li, Z. Lv, H. Zhou, X. Yang, J. Chen, H. Guo, Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101. Sci. Rep. 7, 3316 (2017). https://doi.org/10.1038/s41598-017-03526-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Luo, J. Zhang, M. Kiani, Y. Chen, J. Chen, G. Wang, S.H. Chan, R. Wang, Synthesis of MOF-derived nonprecious catalyst with high electrocatalytic activity for oxygen reduction reaction. Ind. Eng. Chem. Res. 57, 12087–12095 (2018). https://doi.org/10.1021/acs.iecr.8b02744

    Article  CAS  Google Scholar 

  30. D.W. Kim, H.G. Kim, D.H. Cho, Catalytic performance of MIL-100 (Fe, Cr) and MIL-101 (Fe, Cr) in the isomerization of endo-to exo-dicyclopentadiene. Catal. Commun. 73, 69–73 (2016). https://doi.org/10.1016/j.catcom.2015.10.006

    Article  CAS  Google Scholar 

  31. W. Guo, W. Sun, L.P. Lv, S. Kong, Y. Wang, Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for li-ion storage. ACS Nano 11, 4198–4205 (2017). https://doi.org/10.1021/acsnano.7b01152

    Article  CAS  PubMed  Google Scholar 

  32. D. Němeček, G.J. Thomas, Raman spectroscopy of viruses and viral proteins. Front. Mol. Spectrosc. (2009). https://doi.org/10.1016/B978-0-444-53175-9.00016-7

    Article  Google Scholar 

  33. J. Li, R. Lu, B. Dou, C. Ma, Q. Hu, Y. Liang, F. Wu, S. Qiao, Z. Hao, Porous graphitized carbon for adsorptive removal of benzene and the electrothermal regeneration. Environ. Sci. Technol. 46, 12648–12654 (2012). https://doi.org/10.1021/es303069j

    Article  CAS  PubMed  Google Scholar 

  34. J.C. Wang, J. Ren, H.C. Yao, L. Zhang, J.S. Wang, S.Q. Zang, L.F. Han, Z.J. Li, Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. J. Hazard. Mater. 311, 11–19 (2016). https://doi.org/10.1016/j.jhazmat.2016.02.055

    Article  CAS  PubMed  Google Scholar 

  35. L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@ C composite as wide-bandwidth microwave absorber. Composites Part A 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958

    Article  CAS  Google Scholar 

  36. S.L. Zhang, B.Y. Guan, X.W. Lou, Co–Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small 15, 1–6 (2019). https://doi.org/10.1002/smll.201805324

    Article  CAS  Google Scholar 

  37. R.A.W. Sing, K.S.W. Everet, D.H. Haul, Provisional international union of pure and applied chemistry commission on colloid and surface chemistry subcommittee on reporting gas adsorption data reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  38. K. Aguilar-Arteaga, J.A. Rodriguez, J.M. Miranda, J. Medina, E. Barrado, Determination of non-steroidal anti-inflammatory drugs in wastewaters by magnetic matrix solid phase dispersion-HPLC. Talanta 80, 1152–1157 (2010). https://doi.org/10.1016/j.talanta.2009.08.042

    Article  CAS  PubMed  Google Scholar 

  39. Z. Zhao, B. Liang, M. Wang, Q. Yang, M. Su, S. Liang, Microporous carbon derived from hydroxyl functionalized organic network for efficient adsorption of flumequine: adsorption mechanism and application potentials. Chem. Eng. J. 427, 130943 (2022). https://doi.org/10.1016/j.cej.2021.130943

    Article  CAS  Google Scholar 

  40. W. Xiong, Z. Zeng, G. Zeng, Z. Yang, R. Xiao, X. Li, J. Cao, C. Zhou, H. Chen, M. Jia, Y. Yang, W. Wang, X. Tang, Metal-organic frameworks derived magnetic carbon-ΑFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution. Chem. Eng. J. 374, 91–99 (2019). https://doi.org/10.1016/j.cej.2019.05.164

    Article  CAS  Google Scholar 

  41. H.T. Minh Thanh, T.T. Thu Phuong, P.T. Le Hang, T.T. Tam Toan, T.N. Tuyen, T.X. Mau, D.Q. Khieu, Comparative study of Pb(II) adsorption onto MIL-101 and Fe-MIL-101 from aqueous solutions. J. Environ. Chem. Eng. 6, 4093–4102 (2018). https://doi.org/10.1016/j.jece.2018.06.021

    Article  CAS  Google Scholar 

  42. Y. Li, Y. Wang, L. He, L. Meng, H. Lu, X. Li, Preparation of poly(4-vinylpyridine)-functionalized magnetic Al-MOF for the removal of naproxen from aqueous solution. J. Hazard. Mater. 383, 121144 (2020). https://doi.org/10.1016/j.jhazmat.2019.121144

    Article  CAS  PubMed  Google Scholar 

  43. B.A. Fil, M. Korkmaz, C. Özmetin, An empirical model for adsorption thermodynamics of copper (II) from solutions onto illite clay-batch process design. J. Chil. Chem. Soc. 59, 2686–2691 (2015). https://doi.org/10.4067/s0717-97072014000400012

    Article  Google Scholar 

Download references

Acknowledgements

The authors aknowledge funding from the Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (CN1283-20, PAICyT program) and Ciencia de Frontera-CONACyT-México (1727980). Peña-Velasco G. thanks her doctoral scholarship support (378684) from CONACyT-México.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Luis Guzmán-Mar.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña-Velasco, G., Hinojosa-Reyes, L., Hernández-Ramírez, A. et al. Enhanced Removal of Low Concentrations of Anti-inflammatory Drugs in Water Using Fe-MOF Derived Carbon Treated by Acidic Leaching: Characterization and Performance. J Inorg Organomet Polym 32, 4204–4215 (2022). https://doi.org/10.1007/s10904-022-02426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02426-6

Keywords

Navigation