Skip to main content
Log in

The Porous B6N6 Boron Nitride Covalent Organic Framework as a Potential Platform for Sensing and Delivering Lomustine Anticancer Drug: A First-Principles Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The search for a potential system with desirable electronic properties for sensing and delivering lomustine anticancer drugs led us to the porous B6N6 covalent organic framework (COF). The capability of B6N6 for the recognition and delivery of lomustine investigated using density functional theory calculations at GGA/PBE/DNP computational level. The most stable S1 complex results from the interaction of drug oxygen atoms with the B atom and the B–B bond of the considered COF. The lomustine adsorption causes a remarkable decrease of 83.6% in the band gap (Eg) of the B6N6 moiety in the most stable complexes. The recovery time for this complex at cancer cell temperature are acceptable values of 1.99 × 10–6 and 0.0016 s in the presence and absence of UV irradiation, respectively. The lomustine drug released from the desired carrier in the presence of an external electric field along the z-axis. It is concluded that B6N6 is a potential sensor and drug delivery system for lomustine while treating cancerous tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

N/A.

Code Availability

N/A.

References

  1. W.H. Mahmoud, F.N. Sayed, G.G. Mohamed, Appl. Organomet. Chem. 30, 959–973 (2016)

    Article  CAS  Google Scholar 

  2. F.J.K. Rehmann, L.P. Cuffe, O. Mendoza, D.K. Rai, N. Sweeney, K. Strohfeldt et al., Appl. Organomet. Chem. 19, 293–300 (2005)

    Article  CAS  Google Scholar 

  3. H. Sun, P. She, G. Lu, K. Xu, W. Zhang, Z. Liu, J. Mater. Sci. 49, 6845–6854 (2014)

    Article  CAS  Google Scholar 

  4. H. Chen, B. Wang, D. Gao, M. Guan, L. Zheng, H. Ouyang, Z. Chai, Y. Zhao, W. Feng, Small 9, 2735–2746 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. G. Ciofani, V. Rafa, J. Yu, Y. Chen, Y. Obata, S. Takeoka, A. Menciassi, A. Cuschieri, Curr. Nanosci. 5, 33–38 (2009)

    Article  CAS  Google Scholar 

  6. G. Ciofani, Expert Opin. Drug Deliv. 7, 889–893 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. A.K. Attia, N.F. Abo-Talib, M.H. Tammam, Adv. Pharm. Bull. 7, 151–157 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Z. Noroozi, R. Rahimi, M. Solimannejad, Comput. Theor. Chem. 1129, 9–15 (2018)

    Article  CAS  Google Scholar 

  9. R. Rahimi, M. Solimannejad, Appl. Surf. Sci. 525, 146577 (2020)

    Article  CAS  Google Scholar 

  10. R. Rahimi, M. Solimannejad, J. Mol. Liq. 321, 114917 (2021)

    Article  CAS  Google Scholar 

  11. R. Rahimi, M. Solimannejad, Z. Ehsanfar, J. Mol. Model. 27, 347 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. S. Yao, Z. Liu, L. Li, Nano-Micro Lett. 13, 1–20 (2021)

    Article  CAS  Google Scholar 

  13. S. Bhunia, K.A. Deo, A.K. Gaharwar, Adv. Funct. Mater. 30, 2002046 (2020)

    Article  CAS  Google Scholar 

  14. Q. Fang, J. Wang, S. Gu, R.B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc. 137, 8352–8355 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. L. Bai, S.Z.F. Phua, W.Q. Lim, A. Jana, Z. Luo, H.P. Tham, L. Zhao, Q. Gao, Y. Zhao, Chem. Commun. 52, 4128–4131 (2016)

    Article  CAS  Google Scholar 

  16. N. Liu, W. Huang, X. Zhang, L. Tang, L. Wang, Y. Wang, M. Wu, Appl. Catal. B 221, 119–128 (2018)

    Article  CAS  Google Scholar 

  17. Y. Wang, R. Wang, L. Yu, Y. Wang, C. Zhang, X. Zhang, Chem. Eng. J. 401, 126057 (2020)

    Article  CAS  Google Scholar 

  18. X. Zhang, K. Yue, R. Rao, J. Chen, Q. Liu, Y. Yang, F. Bi, Y. Wang, J. Xu, N. Liu, Appl. Catal. B 310, 121300 (2022)

    Article  CAS  Google Scholar 

  19. X. Zhang, S. Xiang, Q. Du, F. Bi, K. Xie, L. Wang, Mol. Catal. 522, 112226 (2022)

    Article  CAS  Google Scholar 

  20. S. Jiang, Z. Zhao, J. Chen, Y. Yang, C. Ding, Y. Yang, Y. Wang, N. Liu, L. Wang, X. Zhang, Surf. Interfaces 30, 101843 (2022)

    Article  CAS  Google Scholar 

  21. N. Lin, Y. Gong, R. Wang, Y. Wang, X. Zhang, J. Hazard. Mater. 424, 127637 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. E.C. Anota, A.B. Hernandez, A.E. Morales, M. Castro, J. Mol. Graph. Model. 74, 135–142 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. E.C. Anota, M.S. Villanueva, A.E. Morales, M. Castro, Fuller. Nanotub. Carbon Nanostruct. 26, 93–99 (2018)

    Article  Google Scholar 

  24. J.C. Ordaz, E.C. Anota, M.S. Villanueva, M. Castro, New J. Chem. 41, 8045–8052 (2017)

    Article  Google Scholar 

  25. H. Sajid, M. Asif, K. Ayub, M.A. Gilani, M.S. Akhter, T. Mahmood, Surf. Interfaces 27, 101587 (2021)

    Article  CAS  Google Scholar 

  26. Y.Z. Abdullahi, Comput. Theor. Chem. 1197, 113155 (2021)

    Article  CAS  Google Scholar 

  27. H. Fisli, N. Bensouilah, N. Dhaoui, M. Abdaoui, J. Incl. Phenom. Macrocycl. Chem. 73, 369–376 (2012)

    Article  CAS  Google Scholar 

  28. S. Agarwal, D.K. Jangir, P. Singh, R. Mehrotra, J. Photochem. Photobiol. B 130, 281–286 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. L. Zhuang, J. Gao, Y. Zeng, F. Yu, B. Zhang, M. Li, H. Derendorf, C. Liu, Eur. J. Drug Metab. Pharmacokinet. 36, 61–69 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. L. Dirikolu, T. Chakkath, T. Fan, N.R. Mente, J. Anal. Toxicol. 33, 595–603 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. C.R. Bethune, R.J. Geyer, A.M. Spence, R.J.Y. Ho, Cancer Res. 61, 3669–3674 (2001)

    CAS  PubMed  Google Scholar 

  32. P. Mauricc, O. Glidewel, C. Jacquillat, R. Silver, R. Carey, A. Ten Pas, C. Cornell, R.A. Burningham, N.L. Nissen, J.F. Holland, Cancer 41, 1658–1663 (1978)

    Article  Google Scholar 

  33. R.B. Weiss, B.F. Issell, Cancer Treat. Rev. 9, 313–330 (1982)

    Article  CAS  PubMed  Google Scholar 

  34. B. Delley, J. Chem. Phys. 92, 508–517 (1990)

    Article  CAS  Google Scholar 

  35. B. Delley, J. Phys. Chem. 100, 6107–6110 (1996)

    Article  CAS  Google Scholar 

  36. B. Delley, J. Chem. Phys. 113, 7756–7764 (2000)

    Article  CAS  Google Scholar 

  37. J.R. Frisch, M.J. Trucks, G.W. Schlegel, H.B. Scuseria, G.E. Robb, M.A. Cheeseman, G.A. Scalmani, G. Barone, V. Mennucci, B. Petersson, Gaussian 09, Rev. D.0.1 (Gaussian Inc., Wallingford, 2013)

    Google Scholar 

  38. E. Kim, P.F. Weck, S. Berber, D. Tománek, Phys. Rev. B 78, 113404 (2008)

    Article  Google Scholar 

  39. A. Wang, X. Zhang, M. Zhao, Nanoscale 6, 11157–11162 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. S. Sarikurt, F. Ersan, Marmara Fen Bilimleri Dergisi 30, 383–387 (2018)

    Google Scholar 

  41. T. Suter, V. Brazdova, K. McColl, T.S. Miller, H. Nagashima, E. Salvadori, A. Sella, C.A. Howard, C.W. Kay, F. Cora, J. Phys. Chem. C 122, 25183–25194 (2018)

    Article  CAS  Google Scholar 

  42. Y.Z. Abdullahi, T.L. Yoon, A.A. Kassimu, Mater. Chem. Phys. 254, 123470 (2020)

    Article  CAS  Google Scholar 

  43. L. Arrue, R. Pino-Rios, Int. J. Quantum Chem. 120, 26403 (2020)

    Article  Google Scholar 

  44. C.A. Celaya, L.F. Hernández-Ayala, F.B. Zamudio, J.A. Vargas, M. Reina, J. Mol. Liq. 329, 115528 (2021)

    Article  CAS  Google Scholar 

  45. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Lett. 3, 929–933 (2003)

    Article  CAS  Google Scholar 

  46. N.L. Hadipour, A. Ahmadi Peyghan, H. Soleymanabadi, J. Phys. Chem. C 119, 6398–6404 (2015)

    Article  CAS  Google Scholar 

  47. P.T. Wong, S.K. Choi, Chem. Rev. 115, 3388–3432 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. P. Swietach, R.D. Vaughan-Jones, A.L. Harris, A. Hulikova, Philos. Trans. R. Soc. B 369, 20130099 (2014)

    Article  Google Scholar 

  49. E.S. Fatemi, M. Solimannejad, Phys. Chem. Res. 9, 623–636 (2021)

    CAS  Google Scholar 

  50. P.R. Chandran, N. Sandhyarani, RSC Adv. 4, 44922–44929 (2014)

    Article  CAS  Google Scholar 

  51. J. Ge, E. Neofytou, T.J. Cahill III., R.E. Beygui, R.N. Zare, ACS Nano 6, 227–233 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. R. Rahimi, M. Solimannejad, J. Mol. Liq. 354, 118855 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

There is no funds for performing current research.

Author information

Authors and Affiliations

Authors

Contributions

MH: Software, Investigation, Writing original draft. MS: Supervision, Conceptualization, Validation, Reviewing and Editing.

Corresponding author

Correspondence to Mohammad Solimannejad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, M., Solimannejad, M. The Porous B6N6 Boron Nitride Covalent Organic Framework as a Potential Platform for Sensing and Delivering Lomustine Anticancer Drug: A First-Principles Study. J Inorg Organomet Polym 32, 4216–4222 (2022). https://doi.org/10.1007/s10904-022-02407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02407-9

Keywords

Navigation