Skip to main content
Log in

Immobilization Horseradish Peroxidase onto UiO-66-NH2 for Biodegradation of Organic Dyes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Enzymes are extensively used as catalyst in several fields of production such as chemistry, and pharmaceuticals owing to their selectivity, efficiency and environmentally friendliness. However, their applications are often hindered due to their insufficient stability and difficulties in re-use. As a member of porous crystalline materials, metal organic frameworks are a promising enzyme carrier due to their multi-functional pore surfaces and robustness in variety of harsh conditions. In this study, the horseradish peroxidase (HRP) enzyme was immobilized onto UiO-66-NH2 (Universitetet i Oslo) by a facile incubation method at the room temperature to improve the stability and reusability of enzyme. The prepared HRP@UiO-66-NH2 bio-composite was characterized by using FT-IR, XRD and SEM. The crystal structure of MOF was well-preserved after enzyme immobilization. A colorimetric assay for enzyme activity after released from UiO-66-NH2 has been employed based on the catalytic oxidation of phenol coupled with 4-aminoantipyrine. The robustness and activity of immobilized enzyme after released from UiO-66-NH2 were investigated by biodegradation of methyl orange (MO) and methylene blue (MB) with several parameters such as pH, temperature, the dosage of H2O2 and the dye concentration with comparison to its free form. The optimum condition for dye degradation was obtained at basic conditions. The immobilized enzyme maintained its activity at elevated temperature while free enzyme lost its activity at the same conditions, attributed to the armoring effect of UiO-66-NH2. According to the results of studied various parameters, MO and MB were biodegraded to 60% and 45%, respectively, within 60 min with the optimum conditions at pH 9 and 50 °C at a H2O2 dosage of 3%. The superior pH tolerance and stability suggest potential of UiO-66-NH2 immobilized peroxidase enzyme in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.U. Hartl, A. Bracher, M. Hayer-Hartl, Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011)

    Article  PubMed  CAS  Google Scholar 

  2. J. Cui, S. Ren, B. Sun, S. Jia, Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. Coord. Chem. Rev. 370, 22–41 (2018)

    Article  CAS  Google Scholar 

  3. N.J. Turner, Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5, 567–573 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. J.L. Porter, R.A. Rusli, D.L. Ollis, Directed evolution of enzymes for industrial biocatalysis. ChemBioChem 17, 197–203 (2016)

    Article  PubMed  CAS  Google Scholar 

  5. R.J. Drout, L. Robison, O.K. Farha, Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coord. Chem. Rev. 381, 151–160 (2019)

    Article  CAS  Google Scholar 

  6. U. Bornscheuer, G. Huisman, R.J. Kazlauskas, S. Lutz, J. Moore, K. Robins, Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012)

    Article  PubMed  CAS  Google Scholar 

  7. T. Heimbach, D.-M. Oh, L.Y. Li, N.R. Rodrı́guez-Hornedo, G. Garcia, D. Fleisher, Enzyme-mediated precipitation of parent drugs from their phosphate prodrugs. Int. J. Pharm. 261, 81–92 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. B. Schulze, M.G. Wubbolts, Biocatalysis for industrial production of fine chemicals. Curr. Opin. Biotechnol. 10, 609–615 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. S. Luetz, L. Giver, J. Lalonde, Engineered enzymes for chemical production. Biotechnol. Bioeng. 101, 647–653 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451–1463 (2007)

    Article  CAS  Google Scholar 

  11. U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation. Chem. Soc. Rev. 38, 453–468 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. P.V. Iyer, L. Ananthanarayan, Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem. 43, 1019–1032 (2008)

    Article  CAS  Google Scholar 

  13. C.S. Thomas, M.J. Glassman, B.D. Olsen, Solid-state nanostructured materials from self-assembly of a globular protein–polymer diblock copolymer. ACS Nano 5, 5697–5707 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. A. Bhunia, S. Durani, P.P. Wangikar, Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol. Bioeng. 72, 562–567 (2001)

    Article  PubMed  CAS  Google Scholar 

  15. A.M. Mebed, A.M. Abd-Elnaiem, A.H. Alshammari, T.A. Taha, M. Rashad, D. Hamad, Controlling the structural properties and optical bandgap of PbO-Al2O3 nanocomposites for enhanced photodegradation of methylene blue. Catalysts 12, 142 (2022)

    Article  CAS  Google Scholar 

  16. A.M. Abd-Elnaiem, R.F. AbdEl-Baki, F. Alsaaq, S. Orzechowska, D. Hamad, Composite nanoarchitectonics of graphene oxide for better understanding on structural effects on photocatalytic performance for methylene blue dye. J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-02146-3

    Article  Google Scholar 

  17. A.M. Abd-Elnaiem, M.A. Abdel-Rahim, A.Y. Abdel-Latief, A.A.-R. Mohamed, K. Mojsilović, W.J. Stępniowski, Fabrication, characterization and photocatalytic activity of copper oxide nanowires formed by anodization of copper foams. Materials 14, 5030 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. A. Çiftlik, T. Günay Semerci, O. Şahin, F. Semerci, Two-dimensional metal–organic framework nanostructures based on 4,4′-sulfonyldibenzoate for photocatalytic degradation of organic dyes. Crystal Growth & Design 21, 3364–3374 (2021)

  19. S.M.A.G. Ulson de Souza, E. Forgiarini, A.A. Ulson de Souza, Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). J. Hazard. Mater. 147, 1073–1078 (2007)

    Article  PubMed  CAS  Google Scholar 

  20. E. Routoula, S.V. Patwardhan, Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ. Sci. Technol. 54, 647–664 (2020)

    Article  PubMed  CAS  Google Scholar 

  21. W.-Y. Cai, Q. Xu, X.-N. Zhao, J.-J. Zhu, H.-Y. Chen, Porous gold-nanoparticle−CaCO3 hybrid material: preparation, characterization, and application for horseradish Peroxidase assembly and direct electrochemistry. Chem. Mater. 18, 279–284 (2006)

    Article  CAS  Google Scholar 

  22. G.-Y. Kim, K.-B. Lee, S.-H. Cho, J. Shim, S.-H. Moon, Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. J. Hazard. Mater. 126, 183–188 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. F.-Y. Jeng, S.-C. Lin, Characterization and application of PEGylated horseradish peroxidase for the synthesis of poly (2-naphthol). Process Biochem. 41, 1566–1573 (2006)

    Article  CAS  Google Scholar 

  24. M. Negahdary, A. Asadi, S. Mehrtashfar, M. Imandar, H. Akbari-Dastjerdi, F. Salahi, A. Jamaleddini, M. Ajdary, A biosensor for determination of H2O2 by use of HRP enzyme and modified CPE with ZnO NPs. Int. J. Electrochem. Sci. 7, 5185–5194 (2012)

    CAS  Google Scholar 

  25. J. Cheng, S.M. Yu, P. Zuo, Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res. 40, 283–290 (2006)

    Article  PubMed  CAS  Google Scholar 

  26. B. Krajewska, Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35, 126–139 (2004)

    Article  CAS  Google Scholar 

  27. Q. Chang, H. Tang, Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2,4-Dichlorophenol. Molecules 19, 15768–15782 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. H.-L. Jiang, Q. Xu, Porous metal–organic frameworks as platforms for functional applications. Chem. Commun. 47, 3351–3370 (2011)

    Article  CAS  Google Scholar 

  29. H. Zhang, J. Nai, L. Yu, X.W.D. Lou, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77–107 (2017)

    Article  CAS  Google Scholar 

  30. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)

    Article  PubMed  CAS  Google Scholar 

  31. C. Wang, D. Liu, W. Lin, Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 135, 13222–13234 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H.-C. Zhou, Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46, 3386–3401 (2017)

    Article  PubMed  CAS  Google Scholar 

  33. J. Mehta, N. Bhardwaj, S.K. Bhardwaj, K.-H. Kim, A. Deep, Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates. Coord. Chem. Rev. 322, 30–40 (2016)

    Article  CAS  Google Scholar 

  34. N.M. Mahmoodi, J. Abdi, Metal-organic framework as a platform of the enzyme to prepare novel environmentally friendly nanobiocatalyst for degrading pollutant in water. J. Ind. Eng. Chem. 80, 606–613 (2019)

    Article  CAS  Google Scholar 

  35. M. Bilal, M. Adeel, T. Rasheed, H.M.N. Iqbal, Multifunctional metal–organic frameworks-based biocatalytic platforms: recent developments and future prospects. J. Market. Res. 8, 2359–2371 (2019)

    CAS  Google Scholar 

  36. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008)

    Article  PubMed  CAS  Google Scholar 

  37. C. Gomes Silva, I. Luz, F.X. Llabres I Xamena, A. Corma, H. García, Water stable Zr-benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry 16, 11133–11138 (2010)

    Article  PubMed  CAS  Google Scholar 

  38. Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, Selective adsorption of cationic dyes by UiO-66-NH2. Appl. Surf. Sci. 327, 77–85 (2015)

    Article  CAS  Google Scholar 

  39. G.W. Peterson, J.B. DeCoste, F. Fatollahi-Fard, D.K. Britt, Engineering UiO-66-NH2 for toxic gas removal. Ind. Eng. Chem. Res. 53, 701–707 (2014)

    Article  CAS  Google Scholar 

  40. J. Li, F. Wu, L. Lin, Y. Guo, H. Liu, X. Zhang, Flow fabrication of a highly efficient Pd/UiO-66-NH2 film capillary microreactor for 4-nitrophenol reduction. Chem. Eng. J. 333, 146–152 (2018)

    Article  CAS  Google Scholar 

  41. S.-L. Cao, D.-M. Yue, X.-H. Li, T.J. Smith, N. Li, M.-H. Zong, H. Wu, Y.-Z. Ma, W.-Y. Lou, Novel nano-/micro-biocatalyst: soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1,2-octanediol in deep eutectic solvents. ACS Sustain. Chem. Eng. 4, 3586–3595 (2016)

    Article  CAS  Google Scholar 

  42. X. Chang et al., Tandem biocatalysis by CotA-TJ102@ UIO-66-NH 2 and Novozym 435 for highly selective transformation of HMF into FDCA. Trans. Tianjin Univ. 25, 488–496 (2019)

    Article  CAS  Google Scholar 

  43. Y. Li, J. Liu, K. Zhang, L. Lei, Z. Lei, UiO-66-NH2@ PMAA: a hybrid polymer–MOFs architecture for pectinase immobilization. Ind. Eng. Chem. Res. 57, 559–567 (2018)

    Article  CAS  Google Scholar 

  44. X. Lian, Y.-P. Chen, T.-F. Liu, H.-C. Zhou, Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. 7, 6969–6973 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. E. Gkaniatsou, C. Sicard, R. Ricoux, L. Benahmed, F. Bourdreux, Q. Zhang, C. Serre, J.-P. Mahy, N. Steunou, Enzyme encapsulation in mesoporous metal–organic frameworks for selective biodegradation of harmful dye molecules. Angew. Chem. Int. Ed. 57, 16141–16146 (2018)

    Article  CAS  Google Scholar 

  46. X. Liu, W. Qi, Y. Wang, R. Su, Z. He, A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale 9, 17561–17570 (2017)

    Article  PubMed  CAS  Google Scholar 

  47. M. Kandiah et al., Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 22, 6632–6640 (2010)

    Article  CAS  Google Scholar 

  48. W. Chen, J. Chen, Y.-B. Feng, L. Hong, Q.-Y. Chen, L.-F. Wu, X.-H. Lin, X.-H. Xia, Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137, 1706–1712 (2012)

    Article  PubMed  CAS  Google Scholar 

  49. C.C. Allain, L.S. Poon, C.S.G. Chan, W. Richmond, P.C. Fu, Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470–475 (1974)

    Article  PubMed  CAS  Google Scholar 

  50. S. Asad, K. Khajeh, N. Ghaemi, Investigating the structural and functional effects of mutating asn glycosylation sites of horseradish peroxidase to asp. Appl. Biochem. Biotechnol. 164, 454–463 (2011)

    Article  PubMed  CAS  Google Scholar 

  51. J. Shanahan, D.S. Kissel, E. Sullivan, PANI@UiO-66 and PANI@UiO-66-NH2 polymer-MOF hybrid composites as tunable semiconducting materials. ACS Omega 5, 6395–6404 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of uio-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011)

    Article  CAS  Google Scholar 

  53. C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. Streek, Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 39, 453–457 (2006)

    Article  CAS  Google Scholar 

  54. R. Shashanka, H. Esgin, V.M. Yilmaz, Y. Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. J. Sci. 5, 185–191 (2020)

    Google Scholar 

  55. H. Zeng, Z. Yu, L. Shao, X. Li, M. Zhu, Y. Liu, X. Feng, X. Zhu, Ag2CO3@UiO-66-NH2 embedding graphene oxide sheets photocatalytic membrane for enhancing the removal performance of Cr(VI) and dyes based on filtration. Desalination 491, 114558 (2020)

    Article  CAS  Google Scholar 

  56. M. Li, J. Chen, W. Wu, Y. Fang, S. Dong, Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J. Am. Chem. Soc. 142, 15569–15574 (2020)

    Article  PubMed  CAS  Google Scholar 

  57. H.-Q. Zheng, C.-Y. Liu, X.-Y. Zeng, J. Chen, J. Lü, R.-G. Lin, R. Cao, Z.-J. Lin, J.-W. Su, MOF-808: A Metal-Organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg. Chem. 57, 9096–9104 (2018)

    Article  PubMed  CAS  Google Scholar 

  58. M.J. Uddin, R.E. Ampiaw, W. Lee, Adsorptive removal of dyes from wastewater using a metal-organic framework: a review. Chemosphere 284, 131314 (2021)

    Article  PubMed  CAS  Google Scholar 

  59. T. Alp Arici, O.Z. Yeşilel, M. Arici, A water-stable 2D+2D→3D polycatenated coordination polymer for selective adsorption of methylene blue and detection of Fe3+ ion from aqueous solution. J. Taiwan Inst. Chem. Eng. 114, 300–310 (2020)

    Article  CAS  Google Scholar 

  60. T. Deveci, A. Unyayar, M.A. Mazmanci, Production of Remazol Brilliant Blue R decolourising oxygenase from the culture filtrate of Funalia trogii ATCC 200800. J. Mol. Catal. B Enzym. 30, 25–32 (2004)

    Article  CAS  Google Scholar 

  61. S.V. Mohan, K.K. Prasad, N.C. Rao, P.N. Sarma, Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58, 1097–1105 (2005)

    Article  PubMed  CAS  Google Scholar 

  62. W. Liang, P. Wied, F. Carraro, C.J. Sumby, B. Nidetzky, C.-K. Tsung, P. Falcaro, C.J. Doonan, Metal–organic framework-based enzyme biocomposites. Chem. Rev. 121, 1077–1129 (2021)

    Article  PubMed  CAS  Google Scholar 

  63. Y. Du et al., Metal-organic frameworks with different dimensionalities: an ideal host platform for enzyme@MOF composites. Coord. Chem. Rev. 454, 214327 (2022)

    Article  CAS  Google Scholar 

  64. S.S. Nadar, L. Vaidya, V.K. Rathod, Enzyme embedded metal organic framework (enzyme–MOF): de novo approaches for immobilization. Int. J. Biol. Macromol. 149, 861–876 (2020)

    Article  PubMed  CAS  Google Scholar 

  65. S. Tadepalli, J. Yim, S. Cao, Z. Wang, R.R. Naik, S. Singamaneni, Metal–organic framework encapsulation for the preservation and photothermal enhancement of enzyme activity. Small 14, 1702382 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Kırklareli University through Project No. KLUBAP-140.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nurdan Kurnaz Yetim or Fatih Semerci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtuldu, A., Eşgin, H., Yetim, N.K. et al. Immobilization Horseradish Peroxidase onto UiO-66-NH2 for Biodegradation of Organic Dyes. J Inorg Organomet Polym 32, 2901–2909 (2022). https://doi.org/10.1007/s10904-022-02310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02310-3

Keywords

Navigation