Skip to main content
Log in

Pre-Crystallization Criteria and Triple Crystallization Kinetic Parameters of Amorphous–Crystalline Phase Transition of As40S45Se15 Alloy

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This framework focuses mainly on a detailed study of the pre-crystallization criteria that characterize the As40S45Se15 glassy alloy in various heating rates ranging from 5 to 40 (K/min) by Differential Scanning Calorimetry (DSC). These criteria aim to clarify the relationship of the tendency of glass-forming by the heating rate for the investigated glassy alloy. The crystallization parameters were calculated using different methods.The activation energy of crystallization Ec(χ) as a function of conversion (χ) was obtained using the iso-conversional models of Flynn–Wall–Ozawa (FWO), Starink and Kissinger–Akahira–Sunose (KAS). The results show a slight increase of Ec(χ) with conversion (χ) which accounts for a single-step mechanism controlling the crystallization process. Moreever, the conversion dependence of the Avrami exponent n(χ) show an increase with conversion (χ), average values of n(χ) can be accounted for two and three-dimensional crystal growth with heterogeneous nucleation. On the other hand, the fitting of the experimental DSC data to the calculated DSC curves indicated that the crystallization process of the studied glasses cannot be satisfactorily described by the Johnson–Mehl–Avrami (JMA) model. On the contrary (SB) model is more suitable to describe the crystallization process for the studied of As40S45Se15 Alloy. Finally, the crystalline structure of the study sample was recognized by X-ray diffraction (XRD) and electron scanning microscope (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. A. Burian, P. Lecante, A. Mosset, J. Galy, J.M. Tonnerre, D. Raoux, Differential anomalous X-ray scattering studies of amorphous Cd59As41 and Cd26As74. J. Non-Cryst. Solids 212(1), 23–39 (1997)

    CAS  Google Scholar 

  2. X.H. Zhang, J.L. Adam, B. Bureau, Chalcogenide Glasses, in Springer Handbook of Glass. ed. by J.D. Musgraves, J. Hu, L. Calvez (Springer, Cham, 2019), pp. 525–552

    Google Scholar 

  3. K.S. Shaaban, E.S. Yousef, S.A. Mahmoud, E.A. Wahab, E.R. Shaaban, Mechanical, structural and crystallization properties in titanate doped phosphate glasses. J. Inorg. Organomet. Polym Mater. 30, 4655–4663 (2020)

    CAS  Google Scholar 

  4. A.M. Mebed, M. Alzaid, R.M. Hassan, A.M Abd-Elnaiem, Theoretical and experimental parameters of the structure and crystallization kinetics of melt-quenched As30 Te64 Ga6 glassy alloy. J. Inorg. Organomet. Polym. Mater. 31, 1–16 (2021)

    Google Scholar 

  5. B. Shekunov, Kinetics of crystallization and glass transition in amorphous materials. Cryst. Growth Des. 20(1), 95–106 (2019)

    Google Scholar 

  6. L. Maaza, F. Djafri, A. Belmokhtar, A. Benyoucef, Evaluation of the influence of Al2O3 nanoparticles on the thermal stability and optical and electrochemical properties of PANI-derived matrix reinforced conducting polymer composites. J. Phys. Chem. Solids 152, 109970 (2021)

    CAS  Google Scholar 

  7. S. Naghizade, S.M. Sattari-Esfahlan, An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J. Opt. Commun. 41(1), 37–43 (2019)

    Google Scholar 

  8. P. Pandi, R. Bulusu, N. Kommineni, W. Khan, M. Singh, Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 586, 119560 (2020)

    CAS  PubMed  Google Scholar 

  9. R.M. Hassan, A.Z. Mahmoud, M.A. Abdel-Rahim, H.S. Assaedi, S.W. Alraddadi, A.M. Abd-Elnaiem, Effect of thermal annealing on structure and optical properties of amorphous As30Te64Ga6 thin films. J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-01897-3

    Article  Google Scholar 

  10. C. Li, Y. Wang, H. Geng, Crystallization behavior and corrosion resistance of Cu50Zr40 Ag10 amorphous alloy. J. Inorg. Organomet. Polym. Mater. 21(4), 919–924 (2011)

    Google Scholar 

  11. C. Lopez, Evaluation of the photo-induced structural mechanisms in chalcogenide glass materials, Doctoral dissertation, University of Central Florida, 2004.

  12. S.S. Flaschen, A.D.W.R. PearsonNorthover, Low-melting inorganic glasses with high melt fluidities below 400 °C. J. Am. Ceram. Soc. 42(9), 450–450 (1959)

    Google Scholar 

  13. A.K. Singh, Effect of indium additive on heat capacities of Se–Zn–Te multicomponent chalcogenide glasses. Chalcogenide Lett. 8(2), 123–128 (2011)

    CAS  Google Scholar 

  14. A.K. Singh, N. Mehta, K. Singh, Effect of indium additive on glass-forming ability and thermal stability of Se–Zn–Te chalcogenide glasses. Philos. Mag. Lett. 90(3), 201–208 (2010)

    CAS  Google Scholar 

  15. A.K. Singh, N. Mehta, K. Singh, Correlation between Meyer–Neldel rule and phase separation in Se98− xZn2Inx chalcogenide glasses. Curr. Appl. Phys. 9(4), 807–811 (2009)

    Google Scholar 

  16. H. Peng, Z. Liu, Organic charge-transfer complexes for STM-based thermochemical-hole-burning memory. Coord. Chem. Rev. 254(9–10), 1151–1168 (2010)

    CAS  Google Scholar 

  17. T. Velinov, M. Gateshki, D. Arsova, E. Vateva, Thermal diffusivity of Ge–As–Se (S) glasses. Phys. Rev. B 55(17), 11014 (1997)

    CAS  Google Scholar 

  18. C.Y. Yang, M.A. Paesler, D.E. Sayers, Chemical order in the glassy AsxS1–x system: an X-ray-absorption spectroscopy study. Phys. Rev. B 39(14), 10342 (1989)

    CAS  Google Scholar 

  19. V. Vassilev, K. Tomova, V. Parvanova, S. Boycheva, Glass-formation in the GeSe2–Sb2Se3–SnSe system. J. Alloy. Compd. 485(1–2), 569–572 (2009)

    CAS  Google Scholar 

  20. J.B. Wachter, K. Chrissafis, V. Petkov, C.D. Malliakas, D. Bilc, T. Kyratsi et al., Local structure and influence of bonding on the phase-change behavior of the chalcogenide compounds K1−xRbxSb5S8. J. Solid State Chem. 180(2), 420–431 (2007)

    CAS  Google Scholar 

  21. V.G. Ta’eed, N.J. Baker, L. Fu, K. Finsterbusch, M.R. Lamont, D.J. Moss, et al., Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express 15(15), 9205–9221 (2007)

    PubMed  Google Scholar 

  22. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, G.A. Ali, Optical constants, dispersion parameters and non-linearity of different thickness of As40S45Se15 thin films for optoelectronic applications. Optik 186, 275–287 (2019)

    CAS  Google Scholar 

  23. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, G.A.M. Ali, E.S. Yousef, Investigation of structural and optical properties of amorphous-crystalline phase transition of As40 S45 Se15 thin films. Acta Phys. Pol. A. 136(3), 498 (2019)

    CAS  Google Scholar 

  24. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, Sheet resistance–temperature dependence, thermal and electrical analysis of As40S60−xSex thin films. Appl. Phys. A 126(1), 34 (2020)

    CAS  Google Scholar 

  25. T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38(11), 1881–1886 (1965)

    CAS  Google Scholar 

  26. J.H. Flynn, L.A. Wall, General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 70(6), 487 (1966)

    CAS  Google Scholar 

  27. M.J. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta 404(1–2), 163–176 (2003)

    CAS  Google Scholar 

  28. C.D. Doyle, Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6(24), 639–642 (1962)

    CAS  Google Scholar 

  29. T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.) 16(1971), 22–31 (1971)

    Google Scholar 

  30. W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43(2), 219–256 (1948)

    CAS  Google Scholar 

  31. D. Turnbull, Under what conditions can a glass be formed? Contemp. Phys. 10(5), 473–488 (1969)

    CAS  Google Scholar 

  32. A. Dietzel, Glass structure and glass properties. Glasstech 22, 41–49 (1968)

    Google Scholar 

  33. S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on As–Sb–Se glasses. J. Non-Cryst. Solids 88(1), 11–34 (1986)

    CAS  Google Scholar 

  34. M.A.A.S. Abdel RahimEl-KorashyAl-Ariki, Crystallization studies on Se–Te–Cd chalcogenide glasses. Mater. Trans. 51(2), 256–260 (2010)

    Google Scholar 

  35. N. Afify, M.A. Abdel-Rahim, A.A. El-Halim, M.M. Hafiz, Kinetics study of non-isothermal crystallization in Se0.7Ge0.2Sb0.1 chalcogenide glass. J. Non-Cryst. Solids 128(3), 269–278 (1991)

    CAS  Google Scholar 

  36. S. Mahadevan, A. Giridhar, Silver as a dopant and as a constituent in As–Ag–Te glasses: mean atomic volume and Tg. J. Non-Cryst. Solids 197(2–3), 219–227 (1996)

    CAS  Google Scholar 

  37. M. Saad, M. Poulin, Mater. Sci. Forum 19 & 20, 11 (1987)

    Google Scholar 

  38. A. Hrubý, Evaluation of glass-forming tendency by means of DTA. Czechoslov. J. Phys. B 22(11), 1187–1193 (1972)

    Google Scholar 

  39. M. Lasocka, The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater. Sci. Eng. 23(2–3), 173–177 (1976)

    CAS  Google Scholar 

  40. B.D. Sanditov, S.S. Sangadiev, D.S. Sanditov, Relaxation time and cooling rate of a liquid in the glass transition range. Glass Phys. Chem. 33(5), 445–454 (2007)

    CAS  Google Scholar 

  41. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    CAS  Google Scholar 

  42. C.T. Moynihan, A.J. Easteal, M.A. De Bolt, J. Tucker, Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 59(1–2), 12–16 (1976)

    CAS  Google Scholar 

  43. M.A. Abdel-Rahim, A.Y. Abdel-Latif, A. El-Korashy, G.A. Mohamed, Crystallization study of Bi5Ge20Se75 glass. J. Mater. Sci. 30(22), 5737–5742 (1995)

    CAS  Google Scholar 

  44. J. Vázquez, C. Wagner, P. Villares, R. Jiménez-Garay, A theoretical method for determining the crystallized fraction and kinetic parameters by DSC, using non-isothermal techniques. Acta Mater. 44(12), 4807–4813 (1996)

    Google Scholar 

  45. K. Chebli, J.M. Saiter, J. Grenet, A. Hamou, G. Saffarini, Strong-fragile glass forming liquid concept applied to GeTe chalcogenide glasses. Phys. B 304(1–4), 228–236 (2001)

    CAS  Google Scholar 

  46. M.M. Wakkad, E.K. Shokr, S.H. Mohamed, Optical and calorimetric studies of Ge–Sb–Se glasses. J. Non-Cryst. Solids 265(1–2), 157–166 (2000)

    CAS  Google Scholar 

  47. I.S. Ram, K. Singh, Study of glass-transition kinetics of Pb-modified Se80In20 system by using non-isothermal differential scanning calorimetry. Int. J. Thermophys. 35(1), 123–135 (2014)

    CAS  Google Scholar 

  48. G.M. Bartenev, On the relation between the glass transition temperature of silicate glass and rate of cooling or heating. Dokl. Akad. Nauk SSSR 76(2), 227 (1951)

    CAS  Google Scholar 

  49. I. Gutzow, J. Schmelzer, The Vitreous State (Springer, Berlin, 1995)

    Google Scholar 

  50. P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996)

    Google Scholar 

  51. J. Augis, J. Bennett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. Calorim. 13(2), 283–292 (1978)

    CAS  Google Scholar 

  52. Y.Q. Gao, W. Wang, On the activation energy of crystallization in metallic glasses. J. Non-Cryst. Solids 81(1–2), 129–134 (1986)

    CAS  Google Scholar 

  53. P. Ptáček, T. Opravil, F. Šoukal, Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of this Instanton (InTech, 2018).

  54. P. Duhaj, D. Barančok, A. Ondrejka, The study of transformation kinetics of the amorphous Pd–Si alloys. J. Non-Cryst. Solids 21(3), 411–428 (1976)

    CAS  Google Scholar 

  55. K. Tanaka, Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39(2), 1270 (1989)

    CAS  Google Scholar 

  56. T. Ozawa, Kinetics of non-isothermal crystallization. Polymer 12(3), 150–158 (1971)

    CAS  Google Scholar 

  57. K. Matusita, T. Komatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J. Mater. Sci. 19(1), 291–296 (1984)

    CAS  Google Scholar 

  58. K. Matusita, Kinetic study of the crystallisation of glass by differential scanning calorimetry. Phys. Chem. Glasses 20, 81 (1979)

    CAS  Google Scholar 

  59. M. Mohamed, M.N. Abd-el Salam, M.A. Abdel-Rahim, A.Y. Abdel-Latief, E.R. Shaaban, Effect of Ag addition on crystallization kinetics and thermal stability of As–Se chalcogenide glasses. J. Therm. Anal. Calorim. 132(1), 91–101 (2018)

    CAS  Google Scholar 

  60. S. Surinach, M.D. Baro, M.T. Clavaguera-Mora, N. Clavaguera, Glass formation and crystallization in the GeSe2–Sb2Te3 system. J. Mater. Sci. 19(9), 3005–3012 (1984)

    CAS  Google Scholar 

  61. L. Hu, Z. Jiang, J. Chin, A new criterion for crystallization of glass. Ceram. Soc. 18, 315–321 (1990)

    CAS  Google Scholar 

  62. J. Vazquez, P.L. Lopez-Alemany, P. Villares, R. Jimenez-Garay, Evaluation of the glass forming ability of some alloys in the Sb–As–Se system by differential scanning calorimetry. J. Alloy. Compd. 354(1–2), 153–158 (2003)

    CAS  Google Scholar 

  63. E.R. Shaaban, M. Shapaan, Y.B. Saddeek, Structural and thermal stability criteria of Bi2O3–B2O3 glasses. J. Phys. Condens. Matter 20(15), 155108 (2008)

    Google Scholar 

  64. T. Akahira, T. Sunose, Res. Rep. Chiba Inst. Technol. Sci. Technol. 16, 22 (1971)

    Google Scholar 

  65. J.H. Flynn, The ‘temperature integral’—its use and abuse. Thermochim. Acta 300(1–2), 83–92 (1997)

    CAS  Google Scholar 

  66. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)

    CAS  Google Scholar 

  67. S. Vyazovkin, W. Linert, Kinetic analysis of reversible thermal decomposition of solids. Int. J. Chem. Kinet. 27, 73–84 (1995)

    CAS  Google Scholar 

  68. J. Malek, Kinetic analysis of non-isothermal calorimetric data. Sci. Papers Univ. Pardubice 2, 177–209 (1996)

    CAS  Google Scholar 

  69. M. Abdel-Rahim, A. Abdel-Latief, M.N. Abd-el Salam, Kinetic analysis of crystallization process of Se–In–Pb glasses—isoconversion method. Thermochimica acta 573, 57–64 (2013)

    CAS  Google Scholar 

  70. K. Majhi, K.B.R. Varma, Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods. J. Mater. Sci. 44(2), 385–391 (2009)

    CAS  Google Scholar 

  71. T. Ozawa, Applicability of Friedman plot. J. Therm. Anal. 31(3), 547–551 (1986)

    CAS  Google Scholar 

  72. A.A.S. Lopes, R.C.C. Monteiro, R.S. Soares, M.M.R.A. Lima, M.H.V. Fernandes, Crystallization kinetics of a barium–zinc borosilicate glass by a non-isothermal method. J. Alloy. Compd. 591, 268–274 (2014)

    CAS  Google Scholar 

  73. J. Lelito, Crystallization kinetics analysis of the amorphouse Mg72Zn24Ca4 alloy at the isothermal annealing temperature of 507 K. Materials 13(12), 2815 (2020)

    CAS  PubMed Central  Google Scholar 

  74. M.N. Abd-el Salam, E.R. Shaaban, F. Benabdallah, A.M. Hussein, M. Mohamed, Experimental and theoretical studies of glass and crystallization kinetics of semiconducting As40Se40Ag20 chalcogenide glass. Phys. B Condens. Matter 608, 412745 (2021)

    CAS  Google Scholar 

  75. J. Málek, Kinetic analysis of crystallization processes in amorphous materials. Thermochim. Acta 355(1–2), 239–253 (2000)

    Google Scholar 

  76. H.L. Friedman, New methods for evaluating kinetic parameters from thermal analysis data. J. Polym. Sci. Part C Polym. Lett. 7(1), 41–46 (1969)

    CAS  Google Scholar 

  77. J. Šesták, G. Berggren, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta 3(1), 1–12 (1971)

    Google Scholar 

  78. J.D. Hancock, J.H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc. 55(2), 74–77 (1972)

    CAS  Google Scholar 

  79. J.H. Schachtschneider, R.G. Snyder, Vibrational analysis of the n-paraffins—II: normal co-ordinate calculations. Spectrochim. Acta 19(1), 117–168 (1963)

    CAS  Google Scholar 

  80. J. Málek, The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta 267, 61–73 (1995)

    Google Scholar 

  81. M. Marinović-Cincović, B. Janković, B. Milićević, Ž Antić, R.K. Whiffen, M.D. Dramićanin, The comparative kinetic analysis of the non-isothermal crystallization process of Eu3+ doped Zn2SiO4 powders prepared via polymer induced sol–gel method. Powder Technol. 249, 497–512 (2013)

    Google Scholar 

  82. P. Pustkova, D. Švadlák, J. Shánělová, J. Málek, The non-isothermal crystallization kinetics of Sb2S3 in the (GeS2)0.2(Sb2S3)0.8 glass. Thermochim. Acta 445(2), 116–120 (2006)

    CAS  Google Scholar 

  83. H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6(1), 183–195 (1964)

    Google Scholar 

  84. D.W. Henderson, Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids 30(3), 301–315 (1979)

    CAS  Google Scholar 

  85. A.A. Joraid, Limitation of the Johnson–Mehl–Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim. Acta 436, 78–82 (2005)

    CAS  Google Scholar 

  86. P.J. Dunn, D.R. Peacor, A.J. Criddle, R.B. Finkelman, Laphamite, an arsenic selenide analogue of orpiment, from burning anthracite deposits in Pennsylvania. Mineral. Mag. 50(356), 279–282 (1986)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed N. Abd-el Salam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzaid, M., Abd-el Salam, M.N., Qasem, A. et al. Pre-Crystallization Criteria and Triple Crystallization Kinetic Parameters of Amorphous–Crystalline Phase Transition of As40S45Se15 Alloy. J Inorg Organomet Polym 31, 4563–4580 (2021). https://doi.org/10.1007/s10904-021-02080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02080-4

Keywords

Navigation