Skip to main content
Log in

An Amalgam of Mg-Doped TiO2 Nanoparticles Prepared by Sol–Gel Method for Effective Antimicrobial and Photocatalytic Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, undoped and Magnesium doped TiO2 nanoparticles (Mg-TiO2 NPs) are successfully synthesized via a simple sol–gel method cost-effectively. The prepared Mg- TiO2 NPs is characterized by UV–Vis, FTIR, PL, XRD, FESEM, TEM, and EDAX. UV–Visible Spectroscopy showed that an increase in the optical bandgap concerning the concentration of dopant Mg increases. The bandgap values were found to be 3.57–3.54 eV. FTIR spectra shows that the presence of the characteristic stretching and bending vibrational band of Ti–O bonding at 468 cm−1 and shifts in vibrational bands were observed for Mg-TiO2 NPs. PL spectra of Mg- TiO2 NPs at different concentrations exhibit a strong UV emission band. X-ray diffraction confirmed the formation of the tetragonal anatase phase. The average crystallite size of synthesized samples was found to be 22–19 nm. The average crystallite size of Mg- TiO2 NPs decreases with increasing the concentration of dopant Mg. The FESEM and TEM analysis confirmed that the spherical morphology for both TiO2 and Mg-TiO2 NPs. SAED pattern confirms the crystalline nature of prepared samples. EDAX spectra confirm the presence of Ti, O, and Mg and confirm that Mg2+ ions are present in the TiO2 lattices. The prepared samples were investigated against gram-positive and gram-negative bacteria. The prepared samples exhibit potent antibacterial activity against gram-negative bacteria than the gram-positive bacteria. The prepared samples exhibit significant photocatalytic degradation for Methylene blue (MB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.S. Kavitha, S. Baker, D. Rakshith, H.U. Kavitha, H.C. Yashwantha Rao, B.P. Harini, Plants as green source towards synthesis of nanoparticles. Int. Research J. Bio. Sci. 2, 66–77 (2013)

    Google Scholar 

  2. M. Abhilash, Potential applications of nanoparticles. Int. J. Pharm. Biol. Sci. 1, 1–12 (2010)

    Google Scholar 

  3. S. Nagarajan, K.K. Arumugam, Extracellular synthesis of zinc oxide nanoparticle using seaweeds of Gulf of Mannar, India. J. Nanobiotechnol 11, 1–39 (2013)

    Article  Google Scholar 

  4. A.S. Hameed, C. Karthikeyan, S. Sasikumar, V. Senthilkumar, S. Kumaresan, G. Ravi, Journal of Materials Chemistry B 1, 5950–5962 (2013)

    Article  Google Scholar 

  5. A.S. Hameed, C. Karthikeyan, V. Senthilkumar, S. Kumaresan, S. Sasikumar, Mater. Sci. Eng., C 52, 171–177 (2015)

    Article  Google Scholar 

  6. A.S. Hameed, C. Karthikeyan, A.P. Ahamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi, Ravi G Scientific reports. 6, 24312 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015)

    Article  CAS  Google Scholar 

  8. J.H. Li, R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, J. Ding, Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat. 64, 504–509 (2009)

    Article  CAS  Google Scholar 

  9. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021)

    Article  CAS  Google Scholar 

  10. S. Zinatloo-Ajabshir, M. Baladi, Masoud Salavati-Niasari Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. S. Zinatloo-Ajabshir, Seyed Ali Heidari-Asil, Masoud Salavati-Niasari Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution, Ceramics International, Volume 47, Issue 7. Part A 1, 8959–8972 (2021)

    Google Scholar 

  12. H.A. Alhadrami, F. Al-Hazmi, Antibacterial activities of titanium oxide nanoparticles. J. Bioelectron. Nanotechnol. 2, 5 (2017)

    Google Scholar 

  13. S. Banu, V. Vishnu, K. Jamuna, G.A. Kurian, Physiochemical investigation and biovaluation of TiO2 nanocrystals synthesized by chemical and green route. Int. J. Pharm. Pharm. Sci. 6, 396–400 (2014)

    CAS  Google Scholar 

  14. P. Periyat, D.E. McCormack, S.J. Hinder, S.C. Pillai, One-pot synthesis of anionic (nitrogen) and cationic (sulfur) codoped high-temperature stable, visible light active, anatase photocatalysts. J. Phys. Chem. C 113, 3246–3253 (2009)

    Article  CAS  Google Scholar 

  15. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, M. Salavati-Niasari, Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrasonics. Sonochem. 71, 105376 (2021)

    Article  CAS  Google Scholar 

  16. S.A. Heidari-Asil, S. Zinatloo-Ajabshir, O. Amiri, M. Salavati-Niasari, Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrogen Ener. 45(43), 22761–22774 (2020)

    Article  CAS  Google Scholar 

  17. B.B. Muhammad, A. Javed, A. Irfana, Shahid, Effects of solvent on the structure and properties of titanium dioxide nanoparticles and their antibacterial activity. Iran. J. Chem. Chem. Eng. 38(4), 261–272 (2019)

    CAS  Google Scholar 

  18. Q. Zhao, M. Wang, He. Yang, D. Shi, C.L. Yuzheng, K. Rahme, J.D. Holmes, M.A. Morris, N.K. Slater, Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements on the nanoparticle formation. Nanoscale res. lett. 7, 1–10 (2012)

    Google Scholar 

  19. O.L. Kang, A. Ahmad, U.A. Rana, N.H. Hassan, Sol-gel titanium dioxide nanoparticles: preparation and structural characterization. Journal of Nanotechnology 2016, 7 (2016)

    Article  Google Scholar 

  20. A. Feinle, M.S. Elsaesser, N. Hüsing, Sol–gel synthesis of monolithic materials with hierarchical porosity. Chem. Soc. Rev. 45, 3377–3399 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. R. Desai, S.K. Gupta, P.K. Shree Mishra, A.P. Jha, The synthesis Of Tio2 nanoparticles by wet-chemical method and their photoluminescence, thermal and vibrational characterizations: effect of growth condition. Int. J. Nanosci. 10(6), 1249–1256 (2011)

    Article  CAS  Google Scholar 

  22. W. Buraso, V. Lachom, P. Siriya, P. Laokul, Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Mater. Res. Express 5, 115003 (2018)

    Article  Google Scholar 

  23. Hadja Fatima Mehnane, Changlei Wang, Kiran Kumar Kondamareddy, Wenjing Yu, Weiwei Sun, Haimin Liu, Sihang Bai, Wei Liu, Shishang Guo and Xing-Zhong Zhao, Hydrothermal synthesis of TiO2 nanoparticles doped with trace amounts of strontium, and their application as working electrodes for dye sensitized solar cells: tunable electrical properties & enhanced photo-conversion performance. RSC Adv. 7, 2358 (2017)

    Google Scholar 

  24. J.O. Carneiro, S. Azevedo, F. Fernandes, E. Freitas, M. Pereira, C.J. Tavares, S. Lanceros-Me´ndez, V. Teixeira, , Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J Mater Sci 49, 7476–7488 (2014)

    Article  CAS  Google Scholar 

  25. M.Y. Nassar, E.I. Alia, E.S. Zakaria, Tunable auto-combustion preparation of TiO2 nanostructures as efficient adsorbents for the removal of an anionic textile dye. RSC Adv. 7, 8034 (2017)

    Article  CAS  Google Scholar 

  26. C. Jayaseelan, A.A. Rahuman, S.M. Roopan, A.V. Kirthi, J. Venkatesan, S.-K. Kim, M. Iyappan, C. Siva, Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica. Acta. Part A: Mol. Biomol. Spec. 107, 82–89 (2013)

    Article  CAS  Google Scholar 

  27. V.I. Kondratiev, I. Kink, A.E. Romanov, Low Temperature Sol-Gel Technique for Processing Al- Doped Zinc Oxide Films. Mater. Phys. Mech. 17, 38–46 (2013)

    CAS  Google Scholar 

  28. Ullattil, S. G., & Periyat, P, Sol-Gel Synthesis of titanium dioxide. sol-gel materials for energy, Environ. Electron. Appl., (2017), 271–283.

  29. Wang, Preparation, characterization and the antimicrobial properties of metal ion-doped TiO2 nano-powders. Ceramic. Inter. 44, 5145–5154 (2018)

    Article  Google Scholar 

  30. S. Shakir, Abd-ur -Rehman, H. M., Yunus, K., Iwamoto, M., & Periasamy, V., , Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells. J. Alloys. Comp. 737, 740–747 (2018)

    Article  CAS  Google Scholar 

  31. T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29, 211–214 (1985)

    Article  CAS  Google Scholar 

  32. C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi, J. Colloids Interface. Sci. 352, 68–74 (2010)

    Article  CAS  Google Scholar 

  33. D.B. Hamal, J.A. Haggstrom, G.L. Marchin, M.A. Ikenberry, K. Hohn, K.J. Klabunde, Langmuir 26, 2805 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. B. Arora, M. Murar, V. Dhumale, Antimicrobial potential of TiO2 nanoparticles against MDR Pseudomonas aeruginosa. J. Exp. Nanosci. 10, 819–827 (2014)

    Article  Google Scholar 

  35. S. Zinatloo-Ajabshir, Maryam Sadat Morassaei, Omid Amiri, Masoud Salavati-Niasari, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46, 6095–6107 (2020)

    Article  CAS  Google Scholar 

  36. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Nanocrystalline barium stannate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. J Mater Sci: Mater Electron 27, 834–842 (2016)

    CAS  Google Scholar 

  37. S. Zinatloo-Ajabshir, Maryam Sadat Morassaei, Omid Amiri, Masoud Salavati-Niasari, Loke Kok Foong, Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  38. S. Zinatloo-Ajabshir, Maryam Sadat Morassaei, Masoud Salavati-Niasari, Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J. Clean. Prod. 222, 103–110 (2019)

    Article  CAS  Google Scholar 

  39. Arrak Klinbumrung, Panuwat Katekaew , Khuruwan Klinbumrung, Optical Characteristics and Antimicrobial Performance of Mg Doped TiO2 Nanostructures Synthesized by Microwave Assisted Method, The Second Materials Research Society of Thailand International Conference AIP Conf. Proc. 2279, 120009–1–120009–7.

  40. R.S. Dubey, S. Singh, Investigation of structural and optical properties of pure and chromium doped TiO 2 nanoparticles prepared by solvothermal method. Results in Physics 7, 1283–1288 (2017)

    Article  Google Scholar 

  41. J.O. Olowoyo, M. Kumar, N. Singhal, S.L. Jain, J.O. Babalola, A.V. Vorontsov, U. Kumar, Engineering and modeling the effect of Mg doping in TiO2 for enhanced photocatalytic reduction of CO2 to fuels. Catal. Sci. Technol. 8, 3686–3694 (2018)

    Article  CAS  Google Scholar 

  42. S.E. Arasi, J. Madhavan, M.V. Antony Raj, Effect of samarium (Sm3+) doping on structural, optical properties and photocatalytic activity of titanium dioxide nanoparticles. J. Taibah Univ. Sci. 12, 186–190 (2018)

    Article  Google Scholar 

  43. T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, M. Muneer, Photocatalytic performance of Fe-doped TiO2nanoparticles under visible-light irradiation. Materials Research Express 4, 015022 (2017)

    Article  Google Scholar 

  44. A. Bokare, M. Pai, A.A. Athawale, Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation. Sol. Energy 91, 111–119 (2013)

    Article  CAS  Google Scholar 

  45. M. Hudlikar, S. Joglekar, M. Dhaygude, K. Kodam, Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater. Lett. 75, 196–199 (2012)

    Article  CAS  Google Scholar 

  46. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7, 49 (2017)

    Article  Google Scholar 

  47. Li. Xuemin, G. Zhengkai, He. Tao, The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys Chem Chem Phys 15, 20037–20045 (2013)

    Article  Google Scholar 

  48. F.N. Jiménez-García, B. Segura-Giraldo, E. Restrepo-Parra, G.A. López-López, Synthesis of TiO2 thin films by the SILAR method and study of the influence of annealing on its structural, morphological and optical properties. Ingeniare. Revista chilena de ingeniería 23, 622–629 (2015)

    Article  Google Scholar 

  49. R. Sharma, A. Sarkar, R. Jha, A.K. Sharma, D. Sharma, Sol-gel mediated synthesis of TiO2 nanocrystals: structural, optical and electrochemical properties. Int J Appl Ceram Technol. 17, 1400–1409 (2020)

    Article  CAS  Google Scholar 

  50. G. Kasi, J. Seo, Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater. Sci. Eng. B 98, 717–725 (2019)

    Article  CAS  Google Scholar 

  51. K. Mani Rahulan, S. Ganesan, P. Aruna, Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles. Adv Nat Sci: Nanosci Nanotechnol 2, 025012 (2011)

    Google Scholar 

  52. B. Wu, R. Huang, M. Sahu, X. Feng, P. Biswas, Y.J. Tang, Bacterial responses to Cu-doped TiO2 nanoparticles. Sci. Total Environ. 408, 1755–1758 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. T. Ali, A. Ahmed, U. Alam, P. Imran Uddin, M.M. Tripathi, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 212, 325–335 (2018)

    Article  CAS  Google Scholar 

  54. X. Jiang, L. Yang, P. Liu, X. Li, J. Shen, The photocatalytic and antibacterial activities of neodymium and iodine doped TiO2 nanoparticles. Colloids Surf., B 79, 69–74 (2010)

    Article  CAS  Google Scholar 

  55. J. Ananpattarachai, Y. Boonto, P. Kajitvichyanukul, Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria. Environ. Sci. Pollut. Res. 23, 4111–4119 (2015)

    Article  Google Scholar 

  56. Q. Zhao, M. Wang, H. Yang, D. Shi, Y. Wang, Preparation, characterization and the antimicrobial properties of metal ion-doped TiO2 nano-powders. Ceram. Int. 44, 5145–5154 (2018)

    Article  CAS  Google Scholar 

  57. G.V. Anehosur, R.D. Kulkarni, M.G. Naik, R.K. Nadiger, Synthesis and determination of antimicrobial activity of visible light activated TiO2 nanoparticles with polymethyl methacrylate denture base resin against staphylococcus aureus. Anehosur J Gerontol Geriatric Res 1, 1000103 (2012)

    Google Scholar 

  58. M. Behpour, M. Chakeri, Ag-doped TiO2 nanocomposite prepared by sol gel method: photocatalytic bactericidal under visible light and characterization. JNS 2, 227–234 (2012)

    Google Scholar 

  59. Carol López de Dicastillo, Cristian Patiño, María José Galotto, Yesseny Vásquez-Martínez, Claudia Torrent, Daniela Alburquenque, Alejandro Pereira, and Juan Escrig, Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. Beilstein J. Nanotechnol. 10, 1716–1725 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  60. M. Zimbone, M.A. Buccheri, G. Cacciato, R. Sanz, G. Rappazzo, S. Boninelli, M.G. Grimaldi, Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl. Catal. B 165, 487–494 (2015)

    Article  CAS  Google Scholar 

  61. R.P. Barkul, M.K. Patil, S.M. Patil, V.B. Shevale, S.D. Delekar, Sunlight-assisted photocatalytic degradation of textile effluent and Rhodamine B by using iodine doped TiO2 nanoparticles. J. Photochem. Photobiol., A 349, 138–147 (2017)

    Article  CAS  Google Scholar 

  62. J.O. Olowoyo, M. Kumar, N. Singhal, S.L. Jain, J.O. Babalola, A.V. Vorontsov, U. Kumar, Engineering and modeling the effect of mg doping in TiO2 for enhanced photocatalytic reduction of CO2 to fuels. J. Name. 00, 1–3 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nithya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithya, N., Gopi, S. & Bhoopathi, G. An Amalgam of Mg-Doped TiO2 Nanoparticles Prepared by Sol–Gel Method for Effective Antimicrobial and Photocatalytic Activity. J Inorg Organomet Polym 31, 4594–4607 (2021). https://doi.org/10.1007/s10904-021-02076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02076-0

Keywords

Navigation