Skip to main content
Log in

Investigation of Third-Order Optical Susceptibility in ZnO/SnO2/Ag Ternary Composite Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, a two-step co-precipitation method has been utilized to synthesize Ag-loaded ZnO/SnO2 composite nanoheterojunctions. The obtained composite nanoparticles have been characterized using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Linear optical studies have been conducted by UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) and photoluminescence (PL) emission techniques. UV–Vis DRS results have indicated the enhanced absorption ability for Ag-loaded ZnO/SnO2 composites relevant to the surface plasmon resonance. PL analysis has shown a delay in the recombination rate of photoexcited electron–hole pairs due to the formation of the built-in internal electric field. The responses of composite samples to intense laser fields have been examined by a standard single-beam Z-scan technique under a 532-nm Nd:YAG laser as an excitation source. The nonlinear optical behaviors have been confirmed by the observation of the self-defocusing phenomenon due to the negative lens effect and reverse saturable absorption response owning to two-photon absorption processes. The measured value of the third-order nonlinear susceptibility for Ag-loaded ZnO/SnO2 composite nanoheterojunctions has been found to be 5.61 × 10–5 esu, presenting an increase about 2.4 times higher than that of sole ZnO/SnO2 nanoparticles (2.31 × 10–5 esu).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Fainman, J. Ma, S.H. Lee, Mater. Sci. Rep. 9, 53 (1993). https://doi.org/10.1016/0920-2307(93)90008-3

    Article  CAS  Google Scholar 

  2. E. Garmire, Opt. Express 21, 30532 (2013)

    PubMed  Google Scholar 

  3. V.I. Gavrilenko, T. V Murzina, G. Mizutani, Phys. Res. Int. 2012, 648758 (2012). https://doi.org/10.1155/2012/648758

    Google Scholar 

  4. Y.Q. Li, C.C. Sung, R. Inguva, C.M. Bowden, JOSA B 6, 814 (1989)

    CAS  Google Scholar 

  5. M.I. Sayyed, M. Rashad, Y.S. Rammah, Ceram. Int. 46, 22964 (2020)

    CAS  Google Scholar 

  6. Y. Asadi, Z. Nourbakhsh, J. Phys. Chem. Solids 132, 213 (2019)

    CAS  Google Scholar 

  7. Y. Yang, O. Ba, S. Dai, F. Chen, G. Boudebs, J. Non-Cryst. Solids 554, 120581 (2021)

    CAS  Google Scholar 

  8. I. Rocha-Mendoza, S. Camacho-Lopez, Y.Y. Luna-Palacios, Y. Esqueda-Barrn, M.A. Camacho-Lopez, M. Camacho-Lopez, G. Aguilar, Opt. Laser Technol. 99, 118 (2018)

    CAS  Google Scholar 

  9. S. Valligatla, A. Chiasera, S. Varas, P. Das, B.N.S. Bhaktha, A. Ukowiak, F. Scotognella, D.N. Rao, R. Ramponi, G.C. Righini, Opt. Mater. 50, 229 (2015)

    CAS  Google Scholar 

  10. L.F. Da Silva, O.F. Lopes, A.C. Catto, W. Avansi, M.I.B. Bernardi, M.S. Li, C. Ribeiro, E. Longo, RSC Adv. 6, 2112 (2016)

    Google Scholar 

  11. Q. Tong, Y.-H. Wang, X.-X. Yu, B. Wang, Z. Liang, M. Tang, A.-S. Wu, H.-J. Zhang, F. Liang, Y.-F. Xie, Nanotechnology 29, 165706 (2018)

    PubMed  Google Scholar 

  12. A.S. Rao, G. Sethuraman, O.S.N. Ghosh, A. Sharan, A.K. Viswanath, ArXiv Prepr. ArXiv 1806, 09404 (2018)

    Google Scholar 

  13. A. Rout, G.S. Boltaev, R.A. Ganeev, K.S. Rao, D. Fu, R.Y. Rakhimov, S.S. Kurbanov, S.Z. Urolov, Z.S. Shaymardanov, C. Guo, Eur. Phys. J. D 73, 235 (2019)

    Google Scholar 

  14. U. Vinoditha, B.K. Sarojini, K.M. Sandeep, B. Narayana, S.R. Maidur, P.S. Patil, K.M. Balakrishna, Appl. Phys. A 125, 436 (2019)

    Google Scholar 

  15. K. Spoorthi, S. Pramodini, I.V. Kityk, M. Abd-Lefdil, M. Sekkati, A. El Fakir, A. Rao, G. Sanjeev, P. Poornesh, Laser Phys. 27, 65403 (2017)

    Google Scholar 

  16. P. Prieto-Cortes, R.I. Alvarez-Tamayo, M. Garcia-Mendez, M. Duran-Sanchez, A. Barcelata-Pinzon, B. Ibarra-Escamilla, Laser Phys. Lett. 16, 45101 (2019)

    CAS  Google Scholar 

  17. P. Karthick, D. Vijayanarayanan, M. Sridharan, C. Sanjeeviraja, K. Jeyadheepan, Thin Solid Films 631, 1 (2017)

    CAS  Google Scholar 

  18. S. Vallejos, S. Selina, F.E. Annanouch, I. Gracia, E. Llobet, C. Blackman, Proc. Eng. 168, 1078 (2016)

    CAS  Google Scholar 

  19. Q.-P. Tran, J.-S. Fang, T.-S. Chin, Mater. Sci. Semicond. Process 40, 664 (2015)

    CAS  Google Scholar 

  20. R. Chen, G.Z. Xing, J. Gao, Z. Zhang, T. Wu, H.D. Sun, Appl. Phys. Lett. 95, 61908 (2009)

    Google Scholar 

  21. M.H.M. Ara, P. Boroojerdian, Z. Javadi, S. Zahedi, M. Morshedian, Opt. J. Light Electron Opt. 123, 2090 (2012)

    Google Scholar 

  22. M.S. Bannur, A. Antony, K.I. Maddani, P. Poornesh, K.B. Manjunatha, S.D. Kulkarni, K.S. Choudhari, Superlattices Microstruct. 122, 156 (2018)

    CAS  Google Scholar 

  23. M.S. Bannur, A. Antony, K.I. Maddani, P. Poornesh, A. Rao, K.S. Choudhari, Phys. E 103, 348 (2018)

    CAS  Google Scholar 

  24. M.S. Bannur, A. Antony, K.I. Maddani, A. Ani, P. Poornesh, A. Rao, K.S. Choudhari, S.D. Kulkarni, Opt. Mater. 94, 294 (2019)

    CAS  Google Scholar 

  25. I.M. El Radaf, T.A. Hameed, T.M. Dahy, Ceram. Int. 45, 3072 (2019)

    Google Scholar 

  26. J.-B. Han, H.-J. Zhou, Q.-Q. Wang, Mater. Lett. 60, 252 (2006)

    CAS  Google Scholar 

  27. M. Shkir, M.T. Khan, V. Ganesh, I.S. Yahia, B.U. Haq, A. Almohammedi, P.S. Patil, S.R. Maidur, S. AlFaify, Opt. Laser Technol. 108, 609 (2018)

    CAS  Google Scholar 

  28. K.-Y. Pan, Y.-H. Lin, P.-S. Lee, J.-M. Wu, H.C. Shih, J. Nanomater. 2012, 6 (2012)

    Google Scholar 

  29. H.W. Kim, S.H. Shim, Appl. Surf. Sci. 253, 510 (2006)

    CAS  Google Scholar 

  30. J. Liu, T. Wang, B. Wang, P. Sun, Q. Yang, X. Liang, H. Song, G. Lu, Sens. Actuators B 245, 551 (2017)

    CAS  Google Scholar 

  31. A.S. Ismail, M.H. Mamat, M.F. Malek, M.M. Yusoff, R. Mohamed, N.D.M. Sin, A.B. Suriani, M. Rusop, Mater. Sci. Semicond. Process 81, 127 (2018)

    CAS  Google Scholar 

  32. S.-B. Choi, W.S. Lee, C. Lee, S. Lee, Appl. Phys. A 124, 817 (2018)

    Google Scholar 

  33. S. Haghighi, A. Haghighatzadeh, Appl. Phys. A 126, 1 (2020)

    Google Scholar 

  34. A. Sakthisabarimoorthi, S.A.M.B. Dhas, M. Jose, Mater. Sci. Semicond. Process 71, 69 (2017)

    CAS  Google Scholar 

  35. L. Wu, S. Fang, L. Ge, C. Han, P. Qiu, Y. Xin, J. Hazard. Mater. 300, 93 (2015)

    CAS  PubMed  Google Scholar 

  36. A. Haghighatzadeh, Opt. Laser Technol. 126, 106114 (2020)

    CAS  Google Scholar 

  37. A. Salah, A.S. Mansour, M.B. Mohamed, S. Hassab-Elnaby, Optik 181, 278 (2019)

    CAS  Google Scholar 

  38. A. Sakthisabarimoorthi, S.A.M.B. Dhas, M. Jose, Mater. Chem. Phys. 212, 224 (2018)

    CAS  Google Scholar 

  39. M. Ebrahimi, A. Zakery, M. Karimipour, M. Molaei, Opt. Mater. 57, 146 (2016)

    CAS  Google Scholar 

  40. Y. Li, D.-L. Li, J.-C. Liu, Chin. Chem. Lett. 26, 304 (2015)

    CAS  Google Scholar 

  41. T. Ajeesha, A. Ashwini, M. George, A. Manikandan, J.A. Mary, Y. Slimani, M.A. Almessiere, A. Baykal, Phys. B Condens. Matter. 606, 412660 (2021). https://doi.org/10.1016/j.physb.2020.412660

    CAS  Google Scholar 

  42. Y. Li, L. Chen, F. Zhao, Trans. Nonferrous Met. Soc. China 28, 137 (2018)

    CAS  Google Scholar 

  43. Z. Yang, L. Lv, Y. Dai, Z. Xv, D. Qian, Appl. Surf. Sci. 256, 2898 (2010)

    CAS  Google Scholar 

  44. P.K. Baitha, P.P. Pal, J. Manam, Nucl. Instruments Methods Phys. Res. A 745, 91 (2014)

    CAS  Google Scholar 

  45. S. Balachandran, K. Selvam, B. Babu, M. Swaminathan, Dalton Trans. 42, 16365 (2013)

    CAS  PubMed  Google Scholar 

  46. L. Ma, S.Y. Ma, H. Kang, X.F. Shen, T.T. Wang, X.H. Jiang, Q. Chen, Mater. Lett. 209, 188 (2017)

    CAS  Google Scholar 

  47. S. Das, A.J. Misra, A.P.H. Rahman, B. Das, R. Jayabalan, A.J. Tamhankar, A. Mishra, C.S. Lundborg, S.K. Tripathy, Appl. Catal. B 259, 118065 (2019)

    CAS  Google Scholar 

  48. S. Sabbaghi, F. Doraghi, J. Water Environ. Nanotechnol. 1, 27 (2016)

    Google Scholar 

  49. X.-Y. Zhang, J.-Q. Chi, Z.-Z. Liu, B. Dong, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, C.-G. Liu, Int. J. Electrochem. Sci 13, 5860 (2018)

    CAS  Google Scholar 

  50. T.V. Murzina, I.A. Kolmychek, J. Wouters, T. Verbiest, O.A. Aktsipetrov, JOSA B 29, 138 (2012)

    Google Scholar 

  51. M. Hosseini, A. Haghighatzadeh, B. Mazinani, Opt. Mater. 92, 1 (2019)

    CAS  Google Scholar 

  52. W.B.H. Othmen, B. Sieber, H. Elhouichet, A. Addad, B. Gelloz, M. Moreau, S. Szunerits, R. Boukherroub, Mater. Sci. Semicond. Process 77, 31 (2018)

    Google Scholar 

  53. R. Zhang, P.-G. Yin, N. Wang, L. Guo, Solid State Sci. 11, 865 (2009)

    Google Scholar 

  54. S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang, J. Zuo, Chem. Phys. Lett. 376, 103 (2003)

    CAS  Google Scholar 

  55. V.S. Vinogradov, V.N. Dzhagan, T.N. Zavaritskaya, I.V. Kucherenko, N.N. Mel’nik, N.N. Novikova, E. Janik, T. Wojtowicz, O.S. Plyashechnik, D.R.T. Zahn, Phys. Solid State 54, 2083 (2012)

    CAS  Google Scholar 

  56. A. Kar, S. Kundu, A. Patra, J. Phys. Chem. C 115, 118 (2010)

    Google Scholar 

  57. J. Wang, H. Fan, H. Yu, X. Wang, J. Mater. Eng. Perform. 24, 3426 (2015)

    CAS  Google Scholar 

  58. B. Li, B. Zhang, S. Nie, L. Shao, L. Hu, J. Catal. 348, 256 (2017)

    CAS  Google Scholar 

  59. W. Zhang, B. Wang, C. Hao, Y. Liang, H. Shi, L. Ao, W. Wang, J. Alloys Compd. 684, 445 (2016)

    CAS  Google Scholar 

  60. H. Liu, R. Wu, L. Tian, Y. Kong, Y. Sun, Nanotechnology 29, 285402 (2018)

    PubMed  Google Scholar 

  61. M. Abrari, M. Ahmadi, M. Ghanaatshoar, H.R. Moazami, S.S.H. Davarani, J. Alloys Compd. 784, 1036 (2019)

    CAS  Google Scholar 

  62. J. Wang, Z. Chen, Y. Liu, C.-H. Shek, C.M.L. Wu, J.K.L. Lai, Sol. Energy Mater. Sol. Cells 128, 254 (2014)

    CAS  Google Scholar 

  63. A.A. Sokol, S.A. French, S.T. Bromley, C.R.A. Catlow, H.J.J. van Dam, P. Sherwood, Faraday Discuss 134, 267 (2007)

    CAS  PubMed  Google Scholar 

  64. N. Selvi, S. Sankar, Int. J. Chem. Technol. Res. 6, 5665 (2014)

    CAS  Google Scholar 

  65. P.M. Nithya, L.G. Devi, Surf. Interfaces 15, 205 (2019)

    CAS  Google Scholar 

  66. M.R. Sharifimehr, K. Ayoubi, E. Mohajerani, Opt. Mater. 49, 147 (2015)

    CAS  Google Scholar 

  67. J.L.J. Perez, R. Gutierrez-Fuentes, J.F.S. Ramirez, O.U.G. Vidal, D.E. Tellez-Sanchez, Z.N.C. Pacheco, A.C. Orea, J.A.F. Garcia, Adv. Nanoparticles 2, 223 (2013)

    Google Scholar 

  68. A.K. Kole, P. Kumbhakar, U. Chatterjee, Chem. Phys. Lett. 591, 93–98 (2014)

    CAS  Google Scholar 

  69. K. Milanchian, H. Tajalli, A.G. Gilani, M.S. Zakerhamidi, Opt. Mater. 32, 12 (2009)

    CAS  Google Scholar 

  70. P.B. De Melo, A.M. Nunes, L. Omena, S.M.S. Do Nascimento, M.G.A. da Silva, M.R. Meneghetti, I.N. De Oliveira, Phys. Rev. E 92, 42504 (2015)

    Google Scholar 

  71. M. Karimipour, M. Ebrahimi, Z. Abafat, M. Molaei, Opt. Mater. 57, 257 (2016)

    CAS  Google Scholar 

  72. R. Deepika, D. Dhar, Mohan. Mod. Phys. Lett. B 29, 1550209 (2015)

    CAS  Google Scholar 

  73. V. Dimitrov, S. Sakka II., J. Appl. Phys. 79, 1741 (1996)

    CAS  Google Scholar 

  74. M.Z. Mobaraki, A. Haghighatzadeh, Bull. Mater. Sci. 43, 1 (2020)

    Google Scholar 

  75. A. Haghighatzadeh, B. Mazinani, Appl. Phys. B. 126, 1 (2020)

    Google Scholar 

  76. A.A. Haghighatzadeh, B. Mazinani, Opt. Laser Technol. 131, 106426 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The current study was partially supported by Ahvaz Branch of Islamic Azad University. The authors would like to thank the Research Council for their generous support of this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Haghighatzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raki Tahmasebi, S., Haghighatzadeh, A. Investigation of Third-Order Optical Susceptibility in ZnO/SnO2/Ag Ternary Composite Nanoparticles. J Inorg Organomet Polym 31, 2319–2330 (2021). https://doi.org/10.1007/s10904-021-01993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01993-4

Keywords

Navigation