Skip to main content
Log in

DFT and TDDFT Studies of Non-Fullerene Organometallic Based Acceptors for Organic Photovoltaics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Recently, non-fullerenes acceptor based solar cells have replaced the fullerenes based ones due to their higher enhanced photochemical and thermal stability. Hence, in this work, six molecules based on D–A and D–A–D topologies have been designed, where dipyridophenazine as acceptor (which is attached with a metal atom) is attached with triphenylamine as the donor fragment. In case of D–A topology based A1–A3 molecules, donor: acceptor ratio is 1:1 while in D–A–D type B1–B3 molecules it is 1:2. Computational analyses based on density functional and time-dependent density functional are carried out to investigate the effect of Ca, Mg, and Be metals in both topologies. Reduced orbital energy levels in all designed molecules refer to them as good acceptors in both topologies. Ca-complexed (A1 and B1) acceptors in both topologies after the optimal function have shown a smaller energy gap of 0.6 eV than those of reference R and all other designed molecules. In case of D–A–D topology, B1 showed a significant red-shift of 72 nm than that of R. While D–A topology-based A1 showed a more or less similar absorption wavelength like R. Besides, absorption peaks of Mg and Be-complexed molecules are stronger in the case of D–A–D topology. In a nutshell, this computational investigation approved these molecules as efficient and effective for non-fullerene organometallic based acceptors for organic solar cell devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Baldenebro-López et al., Computational molecular nanoscience study of the properties of copper complexes for dye-sensitized solar cells. Int. J. Mol. Sci. 13(12), 16005–16019 (2012)

    PubMed  PubMed Central  Google Scholar 

  2. H.B. Khalil, S.J.H. Zaidi, Energy crisis and potential of solar energy in Pakistan. Renew. Sustain. Energy Rev. 31, 194–201 (2014)

    Google Scholar 

  3. N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011)

    Google Scholar 

  4. E.H. Lysen, F. van Hulle, Pumping water with solar cells. Int. Energy J. 4(1), 54 (2017)

    Google Scholar 

  5. A.J. Nozik, J. Miller, Introduction to Solar Photon Conversion (ACS Publications, Washington, 2010).

    Google Scholar 

  6. N.S. Lewis, Toward cost-effective solar energy use. Science 315(5813), 798–801 (2007)

    CAS  PubMed  Google Scholar 

  7. S. Binetti et al., Key success factors and future perspective of silicon-based solar cells. Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/249502

    Article  Google Scholar 

  8. P.-L. Ong, I. Levitsky, Organic/IV, III-V semiconductor hybrid solar cells. Energies 3(3), 313–334 (2010)

    CAS  Google Scholar 

  9. C.A. Wolden et al., Photovoltaic manufacturing: present status, future prospects, and research needs. J. Vacuum Sci. Technol. A 29(3), 030801 (2011)

    Google Scholar 

  10. M.A. Green et al., Solar cell efficiency tables (version 50). Prog. Photovoltaics Res. Appl. 25(7), 668–676 (2017)

    Google Scholar 

  11. S. Bibi, J. Zhang, The ratio and topology effects of benzodithiophene donor–benzooxadiazole acceptor fragments on the optoelectronic properties of donor molecules toward solar cell materials. Phys. Chem. Chemical Physics 17(12), 7986–7999 (2015)

    CAS  Google Scholar 

  12. M.D. Irwin et al., Structural and electrical functionality of NiO interfacial films in bulk heterojunction organic solar cells. Chem. Mater. 23(8), 2218–2226 (2011)

    CAS  Google Scholar 

  13. G. Sathiyan et al., Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett. 57(3), 243–252 (2016)

    CAS  Google Scholar 

  14. G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3(17), 8970–8980 (2015)

    CAS  Google Scholar 

  15. A. Mishra, P. Bäuerle, Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51(9), 2020–2067 (2012)

    CAS  Google Scholar 

  16. L. Fan et al., A new small molecule with indolone chromophore as the electron accepting unit for efficient organic solar cells. Dyes Pigm. 113, 458–464 (2015)

    CAS  Google Scholar 

  17. K. Do et al., New DADAD push–pull organic semiconductors with different benzo [1, 2-b: 4, 5-b′] dithiophene cores for solution processed bulk heterojunction solar cells. Dyes Pigm. 120, 126–135 (2015)

    CAS  Google Scholar 

  18. H. Zhou, L. Yang, W. You, Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45(2), 607–632 (2012)

    CAS  Google Scholar 

  19. P. Morvillo, E. Bobeico, Tuning the LUMO level of the acceptor to increase the open-circuit voltage of polymer-fullerene solar cells: a quantum chemical study. Sol. Energy Mater. Sol. Cells 92(10), 1192–1198 (2008)

    CAS  Google Scholar 

  20. J. Zhang et al., Conjugated polymer–small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 137(25), 8176–8183 (2015)

    CAS  PubMed  Google Scholar 

  21. J.J. Bergkamp, S. Decurtins, S.-X. Liu, Current advances in fused tetrathiafulvalene donor–acceptor systems. Chem. Soc. Rev. 44(4), 863–874 (2015)

    CAS  PubMed  Google Scholar 

  22. C.-Z. Li, H.-L. Yip, A.K.-Y. Jen, Functional fullerenes for organic photovoltaics. J. Mater. Chem. 22(10), 4161–4177 (2012)

    CAS  Google Scholar 

  23. J. Hou et al., Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17(2), 119 (2018)

    CAS  PubMed  Google Scholar 

  24. X. Zhang, J. Yao, C. Zhan, A selenophenyl bridged perylenediimide dimer as an efficient solution-processable small molecule acceptor. Chem. Commun. 51(6), 1058–1061 (2015)

    CAS  Google Scholar 

  25. Z. Liu et al., Non-fullerene small molecule acceptors based on perylenediimides. J. Mater. Chem. A 4(45), 17604–17622 (2016)

    CAS  Google Scholar 

  26. W.S. Shin et al., Effects of functional groups at perylenediimide derivatives on organic photovoltaic device application. J. Mater. Chem. 16(4), 384–390 (2006)

    CAS  Google Scholar 

  27. U. Saeed et al., Designation and match of non-fullerene acceptors with X-shaped donors toward organic solar cells. ChemistrySelect 4(13), 3654–3664 (2019)

    CAS  Google Scholar 

  28. H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19(7), 1924–1945 (2004)

    CAS  Google Scholar 

  29. X. Guégano et al., Pronounced electrochemical amphotericity of a fused donor-acceptor compound: a planar merge of TTF with a TCNQ-Type bithienoquinoxaline. Chem. A Eur. J. 15(1), 63–66 (2009)

    Google Scholar 

  30. S. Bibi et al., Effect of different topological structures (D-π-D and D-π-A-π-D) on the optoelectronic properties of benzo [2, 1-B: 3, 4-B́] dithiophene based donor molecules toward organic solar cells. Sol. Energy 186, 311–322 (2019)

    CAS  Google Scholar 

  31. A.R. Belverdi et al., Novel donor-acceptor non-fullerene metal-organic solar cells: a first DFT and TD-DFT study. Phys. B 542, 37–43 (2018)

    CAS  Google Scholar 

  32. S. Bibi, P. Li, J. Zhang, X-Shaped donor molecules based on benzo [2, 1-b: 3, 4-b′] dithiophene as organic solar cell materials with PDIs as acceptors. J. Mater. Chem. A 1(44), 13828–13841 (2013)

    CAS  Google Scholar 

  33. T. Shigehiro et al., Novel 10, 13-disubstituted dipyrido [3, 2-a: 2′, 3′-c] phenazines and their platinum (II) complexes: highly luminescent ICT-type fluorophores based on D-A–D structures. Tetrahedron Lett. 55(37), 5195–5198 (2014)

    CAS  Google Scholar 

  34. B. Du, D. Fortin, P.D. Harvey, A conjugated organometallic polymer with truxene antennas as side arms; a multiluminescent material with evidence for intrachain MO couplings. J. Inorg. Organomet. Polym Mater. 23(1), 81–88 (2013)

    CAS  Google Scholar 

  35. J. Preat, Photoinduced energy-transfer and electron-transfer processes in dye-sensitized solar cells: TDDFT insights for triphenylamine dyes. J. Phys. Chem. C 114(39), 16716–16725 (2010)

    CAS  Google Scholar 

  36. S. Mohakud, S.K. Pati, Large carrier mobilities in octathio [8] circulene crystals: a theoretical study. J. Mater. Chem. 19(25), 4356–4361 (2009)

    CAS  Google Scholar 

  37. D. Song et al., Determination of pKa and the corresponding structures of quinclorac using combined experimental and theoretical approaches. J. Mol. Struct. 1152, 53–60 (2018)

    CAS  Google Scholar 

  38. A. Saeed et al., Exploring the impact of central core modifications among several push-pull configurations to enhance nonlinear optical response. J. Mol. Graph. Model. 100, 107665 (2020)

    CAS  PubMed  Google Scholar 

  39. M. Noormohammadbeigi et al., Feasibility of Ca12O12Nanocluster in Lithium and Sodium Atom/Ion Batteries: DFT Study. J. Inorg. Organometall. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01788-z

    Article  Google Scholar 

  40. Z. Zara et al., Designing benzodithiophene-based donor materials with favorable photovoltaic parameters for bulk heterojunction organic solar cells. ChemistrySelect 2(20), 5628–5639 (2017)

    CAS  Google Scholar 

  41. S. Bibi, J. Zhang, Theoretical studies to investigate the effect of different cores and two different topologies on the optical and charge transfer properties of donor materials for organic solar cells. New J. Chem. 40(4), 3693–3704 (2016)

    CAS  Google Scholar 

  42. N. Noorussabah et al., Copper(II) and nickel(II) complexes of tridentate hydrazide and schiff base ligands containing phenyl and naphthalyl groups: synthesis, structural, molecular docking and density functional study. J. Inorg. Organomet. Polym Mater. 30(11), 4426–4440 (2020)

    CAS  Google Scholar 

  43. M.C. Scharber et al., Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18(6), 789–794 (2006)

    CAS  Google Scholar 

  44. A. El Assyry et al., Optical and photovoltaic properties of new quinoxalin-2 (1H)-one-based DA organic dyes for efficient dye-sensitized solar cell using DFT. J. Mater. Environ. Sci. 6(9), 2612–2623 (2015)

    Google Scholar 

  45. S. UrRehman et al., The effect of different aromatic conjugated bridges on optoelectronic properties of diketopyrrolopyrrole-based donor materials for organic photovoltaics. J. Mol. Model. 26(6), 154–154 (2020)

    PubMed  Google Scholar 

  46. S. AlFaify et al., Quantum chemical investigation on molecular structure, vibrational, photophysical and nonlinear optical properties of l-threoninium picrate: an admirable contender for nonlinear applications. J. Comput. Electron. 17(4), 1421–1433 (2018)

    CAS  Google Scholar 

  47. A. Waqas et al., Substitutional effect of different bridging groups on optical and charge transfer properties of small bipolar molecules for OLEDs. J. Phys. Org. Chem. 32(11), e4000 (2019)

    CAS  Google Scholar 

  48. L. Hao et al., Theoretical studies of heteroatom-doping in TiO 2 to enhance the electron injection in dye-sensitized solar cells. RSC Adv. 5(97), 79868–79873 (2015)

    CAS  Google Scholar 

  49. M. Adnan et al., Fine tuning the optoelectronic properties of triphenylamine based donor molecules for organic solar cells. Zeitschrift für Phys. Chem. 231(6), 1127–1139 (2017)

    CAS  Google Scholar 

  50. M. Shoaib et al., Theoretical Investigation Of PeryleneDiimide Derivatives As Acceptors To Match With Benzodithiophene Based Donors For Organic Photovoltaic Devices. Zeitschrift für Phys. Chem. (2019). https://doi.org/10.1515/zpch-2019-1451

    Article  Google Scholar 

  51. W. Zhao et al., Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139(21), 7148–7151 (2017)

    CAS  PubMed  Google Scholar 

  52. M. Bourass et al., DFT/TD-DFT characterization of conjugational electronic structures and spectral properties of materials based on thieno [3, 2-b][1] benzothiophene for organic photovoltaic and solar cell applications. J. Saudi Chem. Soc. 21(5), 563–574 (2017)

    CAS  Google Scholar 

  53. R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. 83(22), 8440–8441 (1986)

    CAS  PubMed  Google Scholar 

  54. M. Essid et al., Synthesis, characterization, Hirshfeld surface analysis and computational studies of 1-methylpiperazine-1, 4-diium bis (hydrogen oxalate):[C5H14N2](HC2O4)2. J. Mol. Struct. 1211, 128075 (2020)

    CAS  Google Scholar 

  55. H. Abbas, M. Shkir, S. AlFaify, Density functional study of spectroscopy, electronic structure, linear and nonlinear optical properties of l-proline lithium chloride and l-proline lithium bromide monohydrate: For laser applications. Arab. J. Chem. 12(8), 2336–2346 (2019)

    CAS  Google Scholar 

  56. S. Muhammad et al., Benchmark study of the linear and nonlinear optical polarizabilities in proto-type NLO molecule of para-nitroaniline. J. Theor. Comput. Chem. 18(06), 1950030 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The calculations were performed in the computational chemistry laboratory at the department of chemistry, University of Agriculture Faisalabad, Pakistan. The authors highly acknowledge the Higher education commission (HEC (Grant # 21-1083/SRGP)) of Pakistan for financial and the University of Agriculture Faisalabad for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsa BiBi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 3341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiq-ur-Rehman, Ghafoor, S., BiBi, S. et al. DFT and TDDFT Studies of Non-Fullerene Organometallic Based Acceptors for Organic Photovoltaics. J Inorg Organomet Polym 31, 1676–1687 (2021). https://doi.org/10.1007/s10904-020-01833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01833-x

Keywords

Navigation