Skip to main content
Log in

The Photophysical Properties of Ga-doped ZnO Thin Films Grown by Spray Pyrolysis Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper we report nanocrystalline ZnO thin films deposited by varying the Ga concentrations and atmosphere gas, onto the glass substrates using spray pyrolysis technique at 450 °C substrate temperature. After deposition Ga-doped ZnO thin films were annealed at temperature 420 °C in vacuum. The morphological, structural, optical and spectral properties of synthetized thin films have been characterized by scanning electron microscopy, X-ray diffraction, Raman analysis, UV–Vis spectrophotometry and spectrofluorimetry. The XRD result shows hexagonal structure with preferential orientation along the (0002) plane and the dependence of the values of the full-width at half-maximum of this peak on the nature of the gas used in the synthesis. Also, it is found that the optical bandgap can be increased by increasing the doping level. The fluorescence spectra of ZnO thin films with 1%, 2%, 3% and 5% concentrations of Ga demonstrate that these nanostructured thin films can produce reactive oxygen species (ROS) such as singlet oxygen under ultraviolet light. Nanocrystalline ZnO thin films in function of the Ga concentration provide the phosphorescence lifetime of the charge separated states up to 102 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.R. Ryu, J.A. Lubguban, T.S. Lee, H.W. White, T.S. Jeong, C.J. Youn, B.J. Kim, Appl. Phys. Lett. 90, 131115 (2007)

    Article  Google Scholar 

  2. H.D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 78(22), 3385 (2001)

    Article  CAS  Google Scholar 

  3. J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, Adv. Mater. 18(20), 2720–2724 (2006)

    Article  CAS  Google Scholar 

  4. C.P. Yang, S.P. Chang, S.J. Chang, S.X. Chen, M.H. Hsu, W.J. Tung, W.L. Huang, T.H. Chang, C.J. Chiu, W.Y. Weng, J. Solid State Sci. Technol. 7(7), Q3083–Q3088 (2018)

    Article  CAS  Google Scholar 

  5. G. Gordillo, C. Calderon, Sol. Energy Mater. Sol. Cells 69, 251–260 (2001)

    Article  CAS  Google Scholar 

  6. E.M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.C. Semmelhack et al., Appl. Phys. Lett. 82, 3901 (2003). https://doi.org/10.1063/1.1578694

    Article  CAS  Google Scholar 

  7. Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y.H.G. Shimaoka, Appl. Surf. Sci. 142, 233–236 (1999)

    Article  CAS  Google Scholar 

  8. R. Ayouchi, D. Leinen, F. Martın et al., Thin Solid Films 426, 68–77 (2003). https://doi.org/10.1016/S0040-6090(02)01331-7

    Article  CAS  Google Scholar 

  9. N.B. Patil, A.R. Nimbalkar, Mater. Sci. Eng., B 227, 53–60 (2018)

    Article  CAS  Google Scholar 

  10. I. Lungu, T. Potlog, In book: Varkonyi-Koczy, Annamaria R.. (ed.) Engineering for Sustainable Future. Inter-Acamia 2019. Lecture Notes in Networks and Systems. 101, 144–158, (2019).

  11. A.R. Kaul, OYu Gorbenko, A.N. Botev, L.I. Burova, Superlattices Microstruct. 38, 272–282 (2005). https://doi.org/10.1016/j.spmi.2005.08.004

    Article  CAS  Google Scholar 

  12. Chen, G. Carraro, D. Barreca, A. Sapelkin, W. Chen, X. Huang, Q. Cheng, F. Zhange, and R. Binions, J. Mater. Chem. A3, 13039–13049, (2015).

  13. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  14. R. Roy, V.G. Hill, E.F. Osborn, J. Am. Chem. Soc. 74(3), 719–722 (1952). https://doi.org/10.1021/ja01123a039

    Article  CAS  Google Scholar 

  15. H. Aida, K. Nishiguchi, H. Takeda et al., Jpn J Appl Phys. 47(11R), 8506 (2008). https://doi.org/10.1143/JJAP.47.8506

    Article  CAS  Google Scholar 

  16. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83(10), 1974–1976 (2003). https://doi.org/10.1063/1.1609251

    Article  CAS  Google Scholar 

  17. Y. Huang, M. Liu, Z. Li, Y. Zeng, S. Liu, Mater. Sci. Eng. B 97, 111–116 (2003). https://doi.org/10.1016/S0921-5107(02)00396-3

    Article  Google Scholar 

  18. F. Decremps, J. Pellicer-Porres, A. Marco Saitta, J.C. Chervin, A. Polian, Phys. Rev. B 65, 092101–092105, (2002).

  19. S.H. Jeong, J.K. Kim, B.T. Lee, J. Phys. D: Appl. Phys. 36, 2017–2020 (2003)

    Article  CAS  Google Scholar 

  20. C.A. Arguello, D.L. Rousseau, S.P. Porto, Phys. Rev. B 181, 1351–2136 (1969). https://doi.org/10.1103/PhysRev.181.1351

    Article  CAS  Google Scholar 

  21. D. Caputo, G. Cesare, F. Inera et al., J. Non-Cryst. Solids 227, 1316–1320 (1998). https://doi.org/10.1016/S0022-3093(98)00313-5

    Article  Google Scholar 

  22. C. Lung, M. Toma, M. Pop, D. Marconi, A. Pop, J. Alloy. Comp. 725, 1238–1243 (2017)

    Article  CAS  Google Scholar 

  23. S.B. Yahia et al., Spectrochimica Acta Part A 71, 1234–1238 (2008). https://doi.org/10.1016/j.saa.2008.03.032

    Article  CAS  Google Scholar 

  24. A. Hossein Adl, P. Kar, S. Farsinezhad, H. Sharma and K. Shankar, RSC Adv. 5, 87007–87018, (2015).

  25. P. K. Narayanaswamy, Proc. Ind. Acad. Sci., A, 6, 121–131, (1947).

  26. F. Rull, Pure Appl. Chem. 74, 1859–1870 (2002). https://doi.org/10.1351/pac200274101859

    Article  CAS  Google Scholar 

  27. A. Nordon A, Mills A, Burn R.T, Cusick F.M, Littlejohn D. Anal. Chim. Acta. 548, 148–158, (2005).

  28. D. Gültekin, H. Akbulut, Acta Phys. Pol., A 129(4), 803–805 (2016). https://doi.org/10.12693/APhysPolA.129.803

    Article  CAS  Google Scholar 

  29. https://www.chegg.com/homework-help/questions-and- answers/-vibrational-transitions-correspond-energies-ir- region-electromagnetic-radiation-obtain-ra-q41734986

  30. A.A. Ahmad, A.M. Alsaad, Q.M. Al-Bataineh, M.A. Al- Naafa, Appl. Phys. A, 124, 458–471, (2018).

  31. G. Regmi, M. Rohini, P. Reyes-Figueroa et al., J Mater Sci: Mater. Electron 29, 15682–15692 (2018). https://doi.org/10.1007/s10854-018-9166-1

    Article  CAS  Google Scholar 

  32. M. Sasanuma, Condens. Matter 7, 10029 (1995). https://doi.org/10.1088/0953-8984/7/50/032

    Article  CAS  Google Scholar 

  33. H. Kunkely and A. Vogler , J.Chem. Soc., Chem. Commun., 1204–1205, (1990).

  34. L. M. Kukreja P. Misra, J. Fallert, D.M. Phase and H. Kalt, J. Appl. Phys., 112, 013525, (2012).

  35. R. Menon, V. Gupta, H.H. Tan, K. Sreenivas, C. Jagadish, J. Appl. Phys. 109, 064905 (2011). https://doi.org/10.1063/1.3552928

    Article  CAS  Google Scholar 

  36. T. M. Borseth, B G Svensson,, A Y, Kuznetsov A Y, P. Klason, Q. X. Zhao and M., Willander, Appl. Phys. Lett. 89, 262112, (2006).

  37. L. Xu, X. Li, J. Yuan, Superlattice Microstruct 44(3), 276–281 (2008). https://doi.org/10.1016/j.spmi.2008.04.004

    Article  CAS  Google Scholar 

  38. C. Jagadish and S.J. Pearton. (1st edn. Amsterdam: Elsevier 2006), p 3.

  39. B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett. 79943, (2001).

  40. A.K. Srivastava, J. Kumar, Adv. Mater. 14, 065002 (2013). https://doi.org/10.1088/1468-6996/14/6/065002

    Article  CAS  Google Scholar 

  41. L. Bixia and F. Zhuxi. Appl. Phys. Lett. APLCLASS2019, 943, (2019).

  42. B. D. Cullity, Elements of X-ray diffraction. (Addison-Wesley Pub. Co., 1956.), pp.18–90.

  43. S.A. M. Lima F.A Sigoli, M. Jr. Jafelicci and M.R. Davolos. Int. J. Inorg. Mater. 3(7), 749–754, (2001).

  44. T.K. Gupta, J. Am. Ceram. Soc. 73(7), 1817–1840 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x

    Article  CAS  Google Scholar 

  45. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002). https://doi.org/10.1063/1.1494125

    Article  CAS  Google Scholar 

  46. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 6, 10224–10234 (2014). https://doi.org/10.1039/c4nr01887g

    Article  CAS  PubMed  Google Scholar 

  47. S. Vempati, J. Mitra, P. Dawson, Nanoscale Res Lett 7, 470 (2012). https://doi.org/10.1186/1556-276X-7-470

    Article  PubMed  PubMed Central  Google Scholar 

  48. R.E. Marotti, J.A. Badán, E. Quagliata, E.A. Dalchiele, Phys. B 398(2), 337–340 (2007). https://doi.org/10.1016/j.physb.2007.04.038

    Article  CAS  Google Scholar 

  49. N.S. Norberg, J. Phys. Chem. B. 109(44), 20810–20816 (2005). https://doi.org/10.1021/jp0535285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Center for Biomedical Engineering through Cooperative Project, RIE, Japan. Also, Dr. T. Potlog thanks the Ministry of Education, Culture and Research of Republic of Moldova for funding the Grant 20.80009.5007.16.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suchada Worasawat, Miyake Taku, Tamara Potlog or Hidenori Mimura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worasawat, S., Taku, M., Potlog, T. et al. The Photophysical Properties of Ga-doped ZnO Thin Films Grown by Spray Pyrolysis Method. J Inorg Organomet Polym 30, 4895–4904 (2020). https://doi.org/10.1007/s10904-020-01605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01605-7

Keywords

Navigation