Skip to main content
Log in

Mechanical, Structural and Crystallization Properties in Titanate Doped Phosphate Glasses

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The authors reported the data found by FT-IR spectroscopy, ultrasonic velocities, DTA investigations of 5Al2O3 – 25Li2O – (70 − x) P2O5 – x TiO2, (0 ≤ x ≤ 25 mol%) of the prepared glass samples. From FT-IR spectroscopy has been indicated the titanate doped phosphate glasses increase the produce of non-bridging oxygens. By ultrasonic velocities has been indicated that these velocities are decreased as well as elastic-moduli and density by the concentration of titanate. This behaviour due to decreasing the density, cross-link density, and increase in molar volume. By DTA the values of (Tg), (Tc) and (Tp) decrease this is due to a decrease the bond strength. A parent glass–ceramics of these glasses have been prepared, and investigate by XRD and SEM. The parent glass–ceramic of these glasses have been prepared and investigate by XRD. Li2P2O6 (lithium orthophosphate) crystalline phase is showed in glasses-free titanate and transformed into LiPO3 in glasses containing titanate. The surface morphology of glass–ceramic has been checked by scanning electron microscope and showed a nearly unchanging surface in glasses-free titanate and large interstitial pores in glasses containing titanate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Milankovic Mogus, S.A. Gajovic, E.D. Day, J. Non-Cryst. Solids 289, 204 (2011). https://doi.org/10.1016/S0022-3093(01)00701-3

    Article  Google Scholar 

  2. S. Prabakar, R. Wenslow, K. Mueller, J. Non-Cryst. Solids 263–264, 82 (2000). https://doi.org/10.1016/S0022-3093(99)00624-9

    Article  Google Scholar 

  3. A.A. El-Maaref, S. Badr, K.S. Shaaban, E.A.A. Wahab, M.M. Elokr, J. Rare Earths 37(3), 253 (2019). https://doi.org/10.1016/j.jre.2018.06.006

    Article  CAS  Google Scholar 

  4. S.L. Boiteux, P. Segonds, L. Canioni, L. Sarger, T. Cardinal, C. Duchesne, E. Fargin, G.L. Flem, J. Appl. Phys. 81(3), 1481 (1997). https://doi.org/10.1063/1.363883

    Article  Google Scholar 

  5. L. Bih, L. Abbas, A. Nadiri, H. Khemakhem, B. Elouadi, J. Mol. Struct. 872, 1 (2008). https://doi.org/10.1016/j.molstruc.2007.02.005

    Article  CAS  Google Scholar 

  6. D. Boudlich, L. Bih, A.M. El Hassane, M. Haddad, A. Yacoubi, A. Nadiri, B. Elouadi, J. Am. Ceram. Soc. 85, 623 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00141.x

    Article  CAS  Google Scholar 

  7. A.E. Taher, A.M. Ali, Y.B. Saddeek, R. Elsaman, H. Algarni, K. Shaaban, T.Z. Amer, Radiat. Phys. Chem. 165, 108403 (2019). https://doi.org/10.1016/j.radphyschem.2019.108403

    Article  CAS  Google Scholar 

  8. Y.M. Moustafa, K. El-Egili, H. Doweidar, I. Abbas, Phys. B 353, 82 (2004). https://doi.org/10.1016/j.physb.2004.09.004

    Article  CAS  Google Scholar 

  9. H. Bih, L. Bih, M.P.F. Graça, M.A. Valente, B. Elouadi, Eur. Chem. Technol. J. 12, 207 (2010). https://doi.org/10.18321/ectj46

    Article  CAS  Google Scholar 

  10. P. Mošner, K. Vosejpková, L. Koudelka, L. Montagne, B. Revel, J. Non-Cryst. Solids 357(14), 2648 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.12.052

    Article  CAS  Google Scholar 

  11. B. Chowdari, Solid State Ion. 76(3–4), 189 (1995). https://doi.org/10.1016/0167-2738(94)00280-6

    Article  CAS  Google Scholar 

  12. R.K. Brow, J. Non-Cryst. Solids 263, 1 (2000). https://doi.org/10.4236/ampc.2013.38046

    Article  CAS  Google Scholar 

  13. H. Akamatsu, K. Fujita, S. Murai, K. Tanaka, Appl. Phys. Lett. 92(25), 251908 (2008). https://doi.org/10.1063/1.2952460

    Article  CAS  Google Scholar 

  14. L. Abbas, L. Bih, A. Nadiri, Y. El Amraoui, D. Mezzane, B. Elouadi, J. Mol. Struct. 876(1), 194 (2008). https://doi.org/10.1016/j.molstruc.2007.06.018

    Article  CAS  Google Scholar 

  15. H. Sinouh, M.L. Azrour Bih, A. El Bouari, S. Benmokhtar, B. Manoun, B. Belhorma, T. Baudin, P. Berthet, D. Solas, R. Haumont, J. Therm. Anal. Calorim. 111, 401 (2013). https://doi.org/10.1007/s10973-012-2394-3

    Article  CAS  Google Scholar 

  16. H. Es-Soufi, L. Bih, B. Manoun, D. Mezzane, P. Lazor, Mater. Res. Proc. 1, 266 (2016). https://doi.org/10.21741/9781945291197-66

    Article  CAS  Google Scholar 

  17. H. Es-soufi, L. Bih, B. Manoun, P. Lazor, J. Non-Cryst. Solids 463, 12 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.02.013

    Article  CAS  Google Scholar 

  18. H. Bih, H. Sinouh, H. Es-soufi, L. Bih, M. Haddad, L. Bejjit, B. Manoun, P. Lazor, J. Appl. Surf. Interfaces 1(1–3), 57 (2017)

    Google Scholar 

  19. H. Es-Soufi, L. Bih, M. Benzineb, New J. Glass Ceram. 9, 33 (2019). https://doi.org/10.4236/njgc.2019.93004

    Article  CAS  Google Scholar 

  20. P. Ganguly, A.K. Jha, Phys. B 405, 3154 (2010). https://doi.org/10.4236/njgc.2019.93004

    Article  CAS  Google Scholar 

  21. T. Hashimoto, H. Nasu, K. Kamiya, J. Am. Ceram. Soc. 89(8), 2521 (2006). https://doi.org/10.1111/j.1551-2916.2006.01101.x

    Article  CAS  Google Scholar 

  22. K. Yukimitu, E.B. Arajo, J.C.S. Moraes, V.C.S. Reynoso, C.L. Carvalho, J. Phys. D: Appl. Phys. 35(24), 3229 (2002)

    Article  CAS  Google Scholar 

  23. G. Novajra, C. Vitale-Brovarone, J.C. Knowles, G. Maina, V. Aina, D. Ghigo, L. Bergandi, J. Biomed. Mater. Res. A 99, 295 (2011). https://doi.org/10.1002/jbm.a.33186

    Article  CAS  PubMed  Google Scholar 

  24. E.A. Abou Neel, J.C. Knowles, J. Mater. Sci.: Mater. Med. 19, 377 (2008). https://doi.org/10.1007/s10856-007-3079-5

    Article  CAS  Google Scholar 

  25. A. Kishioka, Bull. Chem. Soc. Jpn. 51(9), 2559 (1978). https://doi.org/10.1246/bcsj.51.2559

    Article  CAS  Google Scholar 

  26. E.A. Abou Neel, T. Mizoguchi, M. Ito, M. Bitar, V. Salih, J.C. Knowles, Biomaterials 28(19), 2967 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  27. B.E. Springett, J. Non-Cryst. Solids 15(2), 179 (1974). https://doi.org/10.1016/0022-3093(74)90047-7

    Article  CAS  Google Scholar 

  28. R.K. Brow, D.R. Tallant, W.L. Warren, A. McIntyre, D.E. Day, Phys. Chem. Glasses 38(6), 300 (1997)

    CAS  Google Scholar 

  29. M. Abid, M. Belfaquir, M. Hafid, M. Taibi, J. Mater. Environ. Sci. 9(10), 2797 (2018)

    Google Scholar 

  30. K. Manupriya, K. Thind, G. Singh, R.V. Sharma, Phys. Status Solidi A 206, 1447 (2009). https://doi.org/10.1002/pssa.200824426

    Article  CAS  Google Scholar 

  31. Y. Moustafa, K. El-Egili, J. Non-Cryst. Solids 240, 144 (1998). https://doi.org/10.1016/S0022-3093(98)00711-X

    Article  CAS  Google Scholar 

  32. L.R. Ciceo, A. Hulpus, V. Simon, I. Ardelean, J. Non-Cryst. Solids 355, 425 (2009). https://doi.org/10.1016/j.jnoncrysol.2008.12.012

    Article  CAS  Google Scholar 

  33. F.G. Little, B.G. Sahaya, R.M. Srinivasa, N. Veeraiah, Phys. B 393, 61 (2007). https://doi.org/10.1016/j.physb.2006.12.070

    Article  CAS  Google Scholar 

  34. X. Li, A. Lu, H. Yang, J. Non-Cryst. Solids 389, 21 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.01.051

    Article  CAS  Google Scholar 

  35. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., J. Electron. Mater. 49, 2040 (2020). https://doi.org/10.1007/s11082-020-2191-3

    Article  CAS  Google Scholar 

  36. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Opt. Quant. Electron. 52, 125 (2020). https://doi.org/10.1007/s11082-020-2191-3

    Article  CAS  Google Scholar 

  37. A.M. Emara, E.S. Yousef, J. Mod. Opt. 65(15), 1839 (2018). https://doi.org/10.1080/09500340.2018.1461942

    Article  CAS  Google Scholar 

  38. A. Shaim, M. Et-tabirou, L. Montagne, G. Palavit, Mater. Res. Bull. 37, 2459 (2002). https://doi.org/10.1016/S0025-5408(02)00929-7

    Article  CAS  Google Scholar 

  39. Y. Er-rouissi, Z. Chabbou, N. Beloued, S. Aqdim, Adv. Mater. Phys. Chem. 7(10), 353 (2017). https://doi.org/10.4236/ampc.2017.710028

    Article  CAS  Google Scholar 

  40. Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, L.H. Cao, B. Dai, J. Mol. Struct. 992(1–3), 84 (2011). https://doi.org/10.1016/j.molstruc.2011.02.049

    Article  CAS  Google Scholar 

  41. D.A. Magdas, O. Cozar, V. Chis, I. Ardelean, N. Vedeanu, Vib. Spectrosc. 48(2), 251 (2008). https://doi.org/10.1016/j.vibspec.2008.02.016

    Article  CAS  Google Scholar 

  42. I. Szczygie, L. Macalik, E. Radomińska, T. Znamierowska, M. Mączka, P. Godlewska, J. Hanuza, Opt. Mater. 29(9), 1192 (2007). https://doi.org/10.1016/j.optmat.2006.04.015

    Article  CAS  Google Scholar 

  43. R.K. Brow, J. Non-Cryst. Solids 263–264, 1 (2000). https://doi.org/10.1016/S0022-3093(99)00620-1

    Article  Google Scholar 

  44. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, J. Mater. Sci.: Mater. Electron. 31, 6963 (2020). https://doi.org/10.1007/s10854-020-03261-6

    Article  CAS  Google Scholar 

  45. A. Makishima, J.D. Mackenzie, J. Non-Cryst. Solids 12(1), 35 (1973). https://doi.org/10.1016/0022-3093(75)90047-2

    Article  CAS  Google Scholar 

  46. A. Makishima, J.D. Mackenzie, J. Non-Cryst. Solids 17(2), 147 (1975). https://doi.org/10.1016/0022-3093(75)90047-2

    Article  CAS  Google Scholar 

  47. A.K. Varshneya, Fundamentals of inorganic glasses. Academic Press Limited, p. 33 (1994)

  48. N.H. Ray, J. Non-Cryst. Solids 15(3), 423 (1974). https://doi.org/10.1016/0022-3093(74)90148-3

    Article  CAS  Google Scholar 

  49. L. Bih, L. Abbas, M. Azrour et al., J. Therm. Anal. Calorim. 81, 57 (2005). https://doi.org/10.1007/s10973-005-0745-z

    Article  CAS  Google Scholar 

  50. Y.B. Saddeek, K.A. Aly, K.S. Shaaban, A.M. Ali, M.A. Sayed, Silicon 11, 1253 (2019). https://doi.org/10.1007/s12633-018-9912-2

    Article  CAS  Google Scholar 

  51. M. Saad, Poulain M. J. Mater. Sci. Forum. 19(20), 8 (1987)

    Google Scholar 

  52. K. Yukimitu, E.B. Arajo, J.C.S. Moraes, V.C.S. Reynoso, C.L. Carvalho, J. Phys. D Appl. Phys. 35(24), 3229 (2002). https://doi.org/10.1088/0022-3727/35/24/313

    Article  CAS  Google Scholar 

  53. C.T. Ben, L.S. Smiri, Y. Laligant, A. Le Bail, Eur. J. Solid State Inorg. Chem. 35, 255 (1998). https://doi.org/10.1016/S0992-4361(98)80006-4

    Article  Google Scholar 

  54. K.S. Shaaban, S.M. Abo-naf, A.M. Abd Elnaeim, M. Hassouna, E. M. Appl. Phys. A 123(6), 457 (2017). https://doi.org/10.1007/s00339-017-1052-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deanship of Scientific Research at King Khalid University (KKU) for funding this research project, Number: (R.G.P2./62/40) under research center for advanced material science

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. S. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.S., Yousef, E.S., Mahmoud, S.A. et al. Mechanical, Structural and Crystallization Properties in Titanate Doped Phosphate Glasses. J Inorg Organomet Polym 30, 4655–4663 (2020). https://doi.org/10.1007/s10904-020-01574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01574-x

Keywords

Navigation