Skip to main content
Log in

Role of p-Benzoquinone on Chemically Synthesized Nanocomposites by Polyaniline with V2O5 Nanoparticle

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanocomposites of polymer/V2O5 based on aniline and p-benzoquinine monomers have been synthesized by in situ polymerization method. The PANI/V2O5 and poly(ANI-pBQ)/V2O5 with different amounts of V2O5 (0.5 g and 1.5 g) were characterized by XRD, FT-IR, UV–Vis, SEM and TGA. This results confirmed the distribution of V2O5 in polymers matrix and confirms that poly(ANI-pBQ)/V2O5 form demonstrates a good electrical conductivity and higher crystalline nature than that of PANI/V2O5 samples. FT-IR spectrum has confirmed successful synthesis of polymer/v2O5, optical and electrical properties were discussed. Also, the results of the electrochemical test showed a clear and good electroactivity for samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.D. Sudha, A. Pich, V.L. Reena, S. Sivakala, H.J.P. Adler, Water-dispersible multifunctional polyaniline-laponite-keggin iron nanocomposites through a template approach. J. Mater. Chem. 21, 16642–16650 (2011)

    CAS  Google Scholar 

  2. E. Ozkazanc, H. Ozkazanc, Multifunctional polyaniline/chloroplatinic acid composite material: characterization and potential applications. Polm. Eng. Sci. 59(1), 66–73 (2019)

    CAS  Google Scholar 

  3. V.L. Reena, C. Pavithran, V. Verma, J.D. Sudha, Nanostructured multifunctional electromagnetic materials from the guest-host inorganic-organic hybrid ternary system of a polyaniline-clay-polyhydroxy iron composite: preparation and properties. J. Phys. Chem. B. 114(8), 2578–2585 (2010)

    CAS  PubMed  Google Scholar 

  4. N. Asim, S. Radiman, M.A.B. Yarmo, Preparation and characterization of core-shell polyaniline/V2O5 nanocomposite via microemulsion method. Mater. Lett. 62, 1044–1047 (2008)

    CAS  Google Scholar 

  5. V.S. de Souza, H.O. da Frota, E.A. Sanches, Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity. J. Mol. Struct. 1153, 20–27 (2018)

    Google Scholar 

  6. P. Prabhu, S.M. Iqbal, A. Balaji, B. Karthikeyan, Experimental investigation of mechanical and machining parameters of hybrid nanoclay glass fiber-reinforced polyester composites. Adv. Compos. Hybrid Mater. 2, 93 (2019)

    CAS  Google Scholar 

  7. M. Liras, M. Barawi, V.A.P. O’Shea, Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chem. Soc. Rev. 48, 5454–5487 (2019)

    CAS  PubMed  Google Scholar 

  8. M. Hasan, M.O. Ansari, M.H. Cho, M. Lee, Ammonia sensing and DC electrical conductivity studies of p-toluene sulfonic acid doped cetyltrimethylammonium bromide assisted V2O5@polyaniline composite nanofibers. J. Ind. Eng. Chem. 22, 147–152 (2015)

    CAS  Google Scholar 

  9. Z. Luo, Z. Wu, X. Xu, M. Du, T. Wang, Y. Jiang, Impact of substrate temperature on the microstructure, electrical and optical properties of sputtered nanoparticle V2O5 thin films. Vacuum 85, 145–150 (2010)

    CAS  Google Scholar 

  10. S. Beke, A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Films 519, 1761–1771 (2011)

    CAS  Google Scholar 

  11. B.H. Kim, A. Kim, S.Y. Oh, S.S. Bae, Y.J. Yun, H.Y. Yu, Energy gap modulation in V2O5 nanowires by gas adsorption. Appl. Phys. Lett. 93, 233101–233103 (2008)

    Google Scholar 

  12. E.A. Arbab, G.T. Mola, V2O5 thin film deposition for application in organic solar cells. Appl. Phys. A 122, 405–412 (2016)

    Google Scholar 

  13. A. Mane, M. Suryawanshi, J. Kim, A. Moholka, Fast response of sprayed vanadium pentoxide (V2O5) nanorods towards nitrogen dioxide (NO2) gas detection. Appl. Surf. Sci. 403, 540–550 (2017)

    CAS  Google Scholar 

  14. B. Fisher, J. Genossar, L. Patlagan, K. Chashka, G. Reisner, Electric-field-induced semiconductor–semiconductor transition in V2O5. Appl. Phys. A 120, 435–442 (2015)

    CAS  Google Scholar 

  15. N. Abd-Alghafour, N.M. Ahmed, Z. Hassan, M.A. Almessiere, M. Bououdina, N.H. Al-Hardan, High sensitivity extended gate effect transistor based on V2O5 nanorods. J. Mater. Sci.: Mater. Electron. 28, 1364–1369 (2017)

    CAS  Google Scholar 

  16. A. Talled, C.G. Granqvist, Electrochromic vanadium-pentoxide-based films: structural, electrochemical, and optical properties. J. Appl. Phys. 77, 4655–4666 (1995)

    Google Scholar 

  17. T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, D. Golberg, Centimeter-Long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547–2552 (2010)

    CAS  PubMed  Google Scholar 

  18. K.I. Park, H.M. Song, Y. Kim, S.I. Mho, W.I. Cho, I.H. Yeo, Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochim. Acta 55, 8023–8029 (2010)

    CAS  Google Scholar 

  19. I. Boyano, M. Bengoechea, I. de Meatza, O. Miguel, I. Cantero, E. Ochoteco, H. Grande, M.L. Cantu, P.G. Romero, Influence of acids in the Ppy/V2O5 hybrid synthesis and performance as a cathode material. J. Power Sources 174, 1206–1211 (2007)

    CAS  Google Scholar 

  20. D. Li, J. Huang, R.B. Kaner, Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc. Chem. Res. 20, 135–145 (2009)

    Google Scholar 

  21. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Progress Polym. Sci. 34, 783–810 (2009)

    CAS  Google Scholar 

  22. G. Wang, R. Vivek, J.Y. Wang, Polyaniline nanoparticles: synthesis, dispersion and biomedical applications. Mini-Rev. Organ. Chem. 14, 56–64 (2017)

    CAS  Google Scholar 

  23. S. Liu, L. Liu, F. Meng, Y. Li, F. Wang, Protective performance of polyaniline-sulfosalicylic acid/epoxy coating for 5083 aluminum. Materials 13, 292 (2018)

    Google Scholar 

  24. M. Silakhori, M.S. Naghavi, H.S.C. Metselaar, T.M.I. Mahlia, H. Fauzi, M. Mehrali, Accelerated thermal cycling test of microencapsulated paraffin wax/polyaniline made by simple preparation method for solar thermal energy storage. Materials 6, 1608–1620 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. L. Zu, X. Cui, Y. Jiang, Z. Hu, H. Lian, Y. Liu, Y. Jin, Y. Li, X. Wang, Preparation and electrochemical characterization of mesoporous polyaniline-silica nanocomposites as an electrode material for pseudocapacitors. Materials 8, 1369–1383 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. G.A. Planes, J.L. Rodríguez, M.C. Miras, G. García, E. Pastor, C.A. Barbero, Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation. Phys. Chem. Chem. Phys. 12, 10584–10593 (2010)

    CAS  PubMed  Google Scholar 

  27. M. Bláha, F. Marek, Z. Morávková, J. Svoboda, J. Brus, J. Dybal, J. Prokeš, M. Varga, J. Stejskal, Role of p-benzoquinone in the synthesis of a conducting polymer, polyaniline. ACS Omega 4, 7128–7139 (2019)

    PubMed  PubMed Central  Google Scholar 

  28. S. Daikh, F.Z. Zeggai, A. Bellil, A. Benyoucef, Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J. Phys. Chem. Solids 121, 78–84 (2018)

    CAS  Google Scholar 

  29. A. Belalia, A. Zehhaf, A. Benyoucef, Preparation of hybrid material based of PANI with SiO2 and its adsorption of phenol from aqueous solution. Polym. Sci. Ser. B 60, 816–824 (2018)

    CAS  Google Scholar 

  30. Z. Guo, N. Liao, M. Zhang, A. Feng, Enhanced gas sensing performance of polyaniline incorporated with graphene: a first-principles study. Phys. Lett. A 383, 2751–2754 (2019)

    CAS  Google Scholar 

  31. A. Bekhoukh, A. Zehhaf, A. Benyoucef, S. Bousalem, M. Belbachir, Nanoparticules mass effect of ZnO on the properties of poly(4-chloroaniline)/zinc oxide nanocomposites. J. Inorg. Organometall. Polym. Mater. 27, 13–20 (2017)

    CAS  Google Scholar 

  32. F.Z. Kouidri, R. Berenguer, A. Benyoucef, E. Morallon, Tailoring the properties of polyanilines/SiC nanocomposites by engineering monomer and chain substituents. J. Mol. Struct. 1188, 121–128 (2019)

    CAS  Google Scholar 

  33. S. Kundua, B. Satpati, T. Kar, S.K. Pradhan, Microstructure characterization of hydrothermally synthesized PANI/V2O5·nH2O heterojunction photocatalyst for visible light induced photodegradation of organic pollutants and non-absorbing colorless molecules. J. Hazard. Mater. 339, 161–173 (2017)

    Google Scholar 

  34. C.H.B. Silva, D.C. Ferreira, R.A. Ando, M.L.A. Temperini, Aniline-1,4-benzoquinone as a model system for the characterization of products from aniline oligomerization in low acidic media. Chem. Phys. Lett. 551, 130–133 (2012)

    CAS  Google Scholar 

  35. J. Stejskal, M. Trchová, Z. Morávková, P. Bober, M. Bláha, J. Pfleger, P. Magdziarz, J. Prokeš, M. Havlicek, N.S. Sariciftci, A. Sperlich, V. Dyakonov, Z. Zujovic, Conducting materials prepared by the oxidation of p-phenylenediamine with p-benzoquinone. J. Solid State Electrochem. 19, 2653–2664 (2015)

    CAS  Google Scholar 

  36. C. Han, Y. Ye, G. Wang, W. Hong, C. Feng, Selective electro-oxidation of phenol to benzoquinone/hydroquinone on polyaniline enhances capacitance and cycling stability of polyaniline electrodes. Chem. Eng. J. 347, 648–659 (2018)

    CAS  Google Scholar 

  37. Y. Zhang, J. Liu, Y. Zhang, J. Liu, Y. Duan, Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Adv. 7, 54031–54038 (2017)

    CAS  Google Scholar 

  38. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, 487–493 (2010)

    CAS  Google Scholar 

  39. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, H. Weller, Determination of nanocrystal sizes: a comparison of TEM, SAXS and XRD studies of highly monodisperse CoPt3 particles. Langmuir 21, 1931–1936 (2005)

    CAS  PubMed  Google Scholar 

  40. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 2, 98 (1918)

    Google Scholar 

  41. R. Paulraj, P. Shankar, G.K. Mani, L. Nallathambi, J.B.B. Rayappan, Fabrication of PANI–ZnO nanocomposite thin film for room temperature methanol sensor. J. Mater. Sci.: Mater. Electron. 28, 10799–10805 (2017)

    CAS  Google Scholar 

  42. M. Shi, Y. Zhang, M. Bai, B. Li, Facile fabrication of polyaniline with coral-like nanostructure as electrode material for supercapacitors. Synth. Met. 233, 74–78 (2017)

    CAS  Google Scholar 

  43. A.T. Chidembo, K.I. Ozoemena, B.O. Agboola, V. Gupta, G.G. Wildgoosed, R.G. Compton, Nickel(II) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors. Energy Environ. Sci. 3, 228–236 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the D.G.R.S.D.T of Algeria. They also thank the Prof. Emilia Morallon of Alicante University (Spain) for cooperation support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Benyoucef.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouis, D., Zeggai, F.Z., Belmokhtar, A. et al. Role of p-Benzoquinone on Chemically Synthesized Nanocomposites by Polyaniline with V2O5 Nanoparticle. J Inorg Organomet Polym 30, 3502–3510 (2020). https://doi.org/10.1007/s10904-020-01508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01508-7

Keywords

Navigation