Skip to main content
Log in

Ternary Z-Scheme Heterojunction of Bi2WO6 with Reduced Graphene Oxide (rGO) and Bi25FeO40 for Enhanced Visible-Light Photocatalysis

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The novel Bi2WO6/r-GO/Bi25FeO40 Z-scheme system composite photocatalyst was synthesized by hydrothermal method. The crystal structure, elemental composition, surface morphology, optical and photoelectrochemical properties of the synthesized composite photocatalyst were tested. Compared with pure Bi2WO6, Bi25FeO40 and Bi2WO6/Bi25FeO40, Bi2WO6/r-GO/Bi25FeO40 composite photocatalyst has good degradation effect on methylene blue under visible light irradiation for 30 min. The synthetic Bi2WO6/r-GO/Bi25FeO40 photocatalyst norfloxacin also has a certain degradation capacity. The effects of catalyst dosage and norfloxacin concentration on the degradation were investigated. The catalytic mechanism of Bi2WO6/r-GO/Bi25FeO40 composite photocatalyst can be well explained by the Z-scheme system. The results show that the effective charge separation, better light absorption and larger surface area of Bi2WO6/r-GO/Bi25FeO40 composite photocatalyst contribute to excellent photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Diwan, A.J. Tamhankar, R.K. Khandal et al., Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 10, 414 (2010)

    PubMed  PubMed Central  Google Scholar 

  2. Jose Luis Martinez, Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157, 2893–2902 (2009)

    CAS  PubMed  Google Scholar 

  3. Q. Zhou, Chemical pollution and transport of organic dyes in water–soil–crop systems of the Chinese Coast. Bull. Environ. Contam. Toxicol. 66, 784–793 (2001)

    CAS  PubMed  Google Scholar 

  4. K.M. Sellamuthu, C. Mayilswami, A. Valliammai et al., Effect of textile and dye industrial pollution on irrigation water quality of Noyyal river basin of Tamil Nadu. Madras Agric. J. 98, 129–135 (2011)

    Google Scholar 

  5. I. Michael, L. Rizzo, C.S. Mcardell et al., Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res. 47, 957–995 (2013)

    CAS  PubMed  Google Scholar 

  6. P. Verlicchi, M.A. Aukidy, E. Zambello, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci. Total Environ. 429, 123–155 (2012)

    CAS  PubMed  Google Scholar 

  7. M. Nikazara, K. Gholivand, K. Mahanpoor, Using TiO2 supported on Clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23 in water. Kinet. Catal. 48, 214–220 (2007)

    CAS  Google Scholar 

  8. B. Sarwan, B. Pare, A.D. Acharya et al., Mineralization and toxicity reduction of textile dye neutral red in aqueous phase using BiOCl photocatalysis. J. Photochem. Photobiol., B 116, 48–55 (2012)

    CAS  Google Scholar 

  9. Z. Khan, T.R. Chetia, A.K. Vardhaman et al., Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of graphene oxide. RSC Adv. 2, 12122–12128 (2012)

    CAS  Google Scholar 

  10. H. Huang et al., Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl. Catal. B 219, 526–537 (2017)

    CAS  Google Scholar 

  11. M. Chen, W. Chu, Efficient degradation of an antibiotic norfloxacin in aqueous solution via a simulated solar-light-mediated Bi2WO6 process. Ind. Eng. Chem. Res. 51, 4887–4893 (2012)

    CAS  Google Scholar 

  12. W. Fengling, Y. Feng, C. Ping et al., Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination. Appl. Catal. B 227, 114–122 (2018)

    Google Scholar 

  13. H. Fu, C. Pan, W. Yao et al., Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 109, 22432–22439 (2005)

    CAS  PubMed  Google Scholar 

  14. W. Si Yue, L. Meng Ke, S. Di, W. Nan, S. Li Xian, Heng X. Yong, 3D hierarchical flower-like Bi2WO6 microparticles doped with uranyl group: characterization and higher photocatalytic activity. J. Inorg. Organomet. Polym Mater. 25, 434–1440 (2015)

    Google Scholar 

  15. J.J. Wang, L. Tang, G. Zeng et al., Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible light photocatalysis. ACS Sustain. Chem. Eng. 5, 1062–1072 (2017)

    CAS  Google Scholar 

  16. G. Srabanti, Visible-light-active photocatalysis: nanostructured catalyst design, mechanisms, and applications. Sci. Rep. 8, 499–526 (2018)

    Google Scholar 

  17. M. Ritu, K. Vijay et al., Au–TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl. Mater. Interfaces. 10, 34087–34097 (2018)

    Google Scholar 

  18. S. Gunti, A. Kumar, M.K. Ram, Nanostructured photocatalysis in the visible spectrum for the decontamination of air and water. Int. Mater. Rev. 63, 1–26 (2017)

    Google Scholar 

  19. G. Feng, W. Shi, H. Wang et al., Fabrication of a CuBi2O4/g-C3N4 p–n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation. Inorg. Chem. Front. 4, 1–7 (2017)

    Google Scholar 

  20. L. Bisheng et al., Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces. 10, 18824–18836 (2018)

    Google Scholar 

  21. D. Ma, J. Wu, M. Gao et al., Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chem. Eng. J. 290, 136–146 (2016)

    CAS  Google Scholar 

  22. H. Danlian, L. Jing, Z. Guangming, X. Wenjing et al., Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: degradation pathways and mechanism. Chem. Eng. J. 375, 677–687 (2019)

    Google Scholar 

  23. M. Amiri et al., Bi2WO6/Ag3PO4–Ag Z-scheme heterojunction as a new plasmonic visible-light-driven photocatalyst: performance evaluation and mechanism study. New J. Chem. 43, 1275–1284 (2019)

    CAS  Google Scholar 

  24. Z. Jiao, Y. Tang, P. Zhao et al., Synthesis of Z-scheme g-C3N4/PPy/Bi2WO6 composite with enhanced visible-light photocatalytic performance. Mater. Res. Bull. 113, 241 (2019)

    CAS  Google Scholar 

  25. S. Stankovich, D.A. Dikin, G.H.B. Dommett et al., Graphene-based composite materials. Nature 442, 282–286 (2006)

    CAS  PubMed  Google Scholar 

  26. A.K. Geim, Novoselov K S. The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    CAS  PubMed  Google Scholar 

  27. A.H.C. Neto, F. Guinea, N.M.R. Peres et al., The electronic properties of graphene. Phys. Status Solidi 244, 4106–4111 (2007)

    Google Scholar 

  28. E. Gomathi, K. Kumaraguru, Green synthesis and photogenerated charge carriers transfer in SnO2 QDs decorated rGO nanosheets for highly efficient visible light photocatalysis. J. Inorg. Organomet. Polym Mater. 28, 1664–1770 (2018)

    CAS  Google Scholar 

  29. Yibing Li, Haimin Zhang, Porun Liu et al., Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9, 3336–3344 (2013)

    CAS  PubMed  Google Scholar 

  30. X. Pan, Z. Yi, Graphene oxide regulated tin oxide nanostructures: engineering composition, morphology, band structure and photocatalytic properties. ACS Appl. Mater. Interfaces. 7, 27167–27175 (2015)

    CAS  PubMed  Google Scholar 

  31. Y. Huan, H. Danlian, Z. Guangming et al., Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl. Catal. B 239, 408–424 (2018)

    Google Scholar 

  32. Shuying Dong et al., Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chem. Eng. J. 316, 778–789 (2017)

    CAS  Google Scholar 

  33. Zhao Jing et al., Electrospinning construction of Bi2WO6/RGO composite nanofibers with significantly enhanced photocatalytic water splitting activity. RSC Adv. 6, 64741–64748 (2016)

    Google Scholar 

  34. Hongwei Ma et al., Significant enhanced performance for Rhodamine B, phenol and Cr(VI) removal by Bi2WO6 nancomposites via reduced graphene oxide modification. Appl. Catal. B 121, 198–205 (2012)

    Google Scholar 

  35. Kai Yu et al., Enhanced Visible Light photocatalytic degradation of Rhodamine B by Bi2WO6-reduced graphene oxide composites prepared via microwave-assisted method. Nanosci. Nanotechnol. Lett. 6, 666–671 (2014)

    CAS  Google Scholar 

  36. Jiali Zhai et al., Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres. Appl. Surf. Sci. 344, 101–106 (2015)

    CAS  Google Scholar 

  37. D.R. Dreyer, S. Park, C.W. Bielawski et al., The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2009)

    PubMed  Google Scholar 

  38. J. Yang, X. Wang, X. Zhao et al., Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity. J. Phys. Chem. C 119, 3068–3078 (2015)

    CAS  Google Scholar 

  39. X. Xin, J. Lang, T. Wang, Y. Su, Y. Zhao, X. Wang, Construction of novel ternary component photocatalyst Sr0.25H1.5Ta2O6·H2O coupled with g-C3N4 and Ag toward efficient visible light photocatalytic activity for environmental remediation. Appl. Catal. B 181, 197–209 (2016)

    CAS  Google Scholar 

  40. G. Wang, D. Cheng, T. He, Y. Hu, Q. Deng, Y. Mao et al., Enhanced visible-light responsive photocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation. J. Mater. Sci. 30, 10923–10933 (2019)

    CAS  Google Scholar 

  41. Kai Hu et al., Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for enhanced visible-light photocatalysis. J. Colloid Interface Sci. 540, 115–125 (2019)

    CAS  PubMed  Google Scholar 

  42. X. Qian, D. Yue, Z. Tian et al., Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl. Catal. B 193, 16–21 (2016)

    CAS  Google Scholar 

  43. N. Yuanyuan, S. Deli, L. Binqiang et al., Tailoring morphologies, photocatalytic activity, and energy bands of Bi25FeO40 via valence state transformation of doped V ions. Inorg. Chem. 58, 6966–6973 (2019)

    Google Scholar 

  44. X. Fan, P. Zhang, J. Gong et al., Reduced graphene oxide (rGO)/BiVO4 composites with maximized interfacial coupling for visible light photocatalysis. ACS Sustain. Chem. Eng. 2, 2253–2258 (2014)

    Google Scholar 

  45. Y. Wang, J. Wang, H. Shen et al., Synthesis of Ag3PO4/RGO/Bi2WO6 composites with highly efficient photocatalytic activity: efficient visible-light driven all-solid-state Z-scheme photocatalyst. NANO 12, 1750149 (2017)

    CAS  Google Scholar 

  46. Runren Jiang et al., Enhanced photocatalytic activity of a hydrogen bond-assisted 2D/2D Z-scheme SnNb2O6/Bi2WO6 system: highly efficient separation of photoinduced carriers. J. Colloid Interface Sci. 552, 678–688 (2019)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhao, C., Zhang, T. et al. Ternary Z-Scheme Heterojunction of Bi2WO6 with Reduced Graphene Oxide (rGO) and Bi25FeO40 for Enhanced Visible-Light Photocatalysis. J Inorg Organomet Polym 30, 2152–2162 (2020). https://doi.org/10.1007/s10904-019-01385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01385-9

Keywords

Navigation