Skip to main content
Log in

The Influence of pH on Phase and Morphology of BiOIO3 Nanoplates Synthesized by Microwave-Assisted Method and Their Photocatalytic Activities

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The influence of precursor solution pH on phase, morphology and optical properties of BiOIO3 was investigated in this research. The products were synthesized in the solutions with the pH of 2, 3, 4, 5 and 6 by a 360 W microwave (2.45 GHz) at 5 min/cycle for 12 cycles (60 min) and were well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, UV–visible spectroscopy, photoluminescence spectroscopy and Brunauer–Emmett–Teller surface area analysis. According to the analytical results, pure BiOIO3 nanoplates were synthesized at the pH of 2 and 3 and were transformed into pure Bi2O3 nanoparticles at the pH of 6. The photocatalytic activities of products were studied through the degradation of rhodamine B solutions under visible light irradiation. The as-synthesized BiOIO3 nanoplates with band gap energy of 2.90 eV synthesized at the pH of 3 have the highest decolorization efficiency of 97.9% and pseudo-first-order degradation rate of 0.0442 min−1 within 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014)

    Article  CAS  Google Scholar 

  2. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  3. M.R. Delsouz Khaki, M.S. Shafeeyan, A.A. Abdul Raman, W.M. Ashri Wan Daud, Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Mol. Liq. 258, 354–365 (2018)

    Article  CAS  Google Scholar 

  4. Z. Xing, J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, W. Zhou, Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B 225, 452–467 (2018)

    Article  CAS  Google Scholar 

  5. A.G. Rana, W. Ahmad, A. Al-Matar, R. Shawabkeh, Z. Aslam, Synthesis and characterization of Cu–Zn/TiO2 for the photocatalytic conversion of CO2 to methane. Environ. Technol. 38, 1085–1092 (2017)

    Article  CAS  Google Scholar 

  6. X. Zhou, N. Liu, P. Schmuki, Photocatalysis with TiO2 nanotubes: “Colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal. 7, 3210–3235 (2017)

    Article  CAS  Google Scholar 

  7. J. Dong, J. Ye, D. Ariyanti, Y. Wang, S. Wei, W. Gao, Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles. Chemosphere 204, 193–201 (2018)

    Article  CAS  Google Scholar 

  8. T. Giannakopoulou, I. Papailias, N. Todorova, N. Boukos, Y. Liu, J. Yu, C. Trapalis, Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 310, 571–580 (2017)

    Article  CAS  Google Scholar 

  9. L. Tang, J. Wang, G. Zeng, Y. Liu, Y. Deng, Y. Zhou, J. Tang, Z. Guo, Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J. Hazard. Mater. 306, 295–304 (2016)

    Article  CAS  Google Scholar 

  10. Z. Yang, M. Shen, K. Dai, X. Zhang, H. Chen, Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity. Appl. Surf. Sci. 430, 505–514 (2018)

    Article  CAS  Google Scholar 

  11. H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32−-doped Bi2O2CO3. ACS Catal. 5, 4094–4103 (2015)

    Article  CAS  Google Scholar 

  12. Y. Yang, C. Zhang, C. Lai, G. Zeng, D. Huang, M. Cheng, J. Wang, F. Chen, C. Zhou, W. Xiong, BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv. Colloid Interface Sci. 254, 76–93 (2018)

    Article  CAS  Google Scholar 

  13. H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, In situ assembly of BiOI@Bi12O17Cl2 p–n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI 001 active facets for robust and nonselective photocatalysis. Appl. Catal. B 199, 75–86 (2016)

    Article  CAS  Google Scholar 

  14. F. Yang, X. Zhu, J. Fang, D. Chen, W. Feng, Z. Fang, One step solvothermal synthesis of Bi/BiPO4/Bi2WO6 heterostructure with oxygen vacancies for enhanced photocatalytic performance. Ceram. Int. 44, 6918–6925 (2018)

    Article  CAS  Google Scholar 

  15. H. Huang, H. Ou, J. Feng, X. Du, Y. Zhang, Achieving highly promoted visible-light sensitive photocatalytic activity on BiOIO3 via facile iodine doping. Colloid Surf. A 518, 158–165 (2017)

    Article  CAS  Google Scholar 

  16. X.C. Meng, Z.S. Zhang, Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J. Mol. Catal. A 423, 533–549 (2016)

    Article  CAS  Google Scholar 

  17. W. Wang, B. Huang, X. Ma, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Efficient separation of photogenerated electron–hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates. Chem. Eur. J. 19, 14777–14780 (2013)

    Article  CAS  Google Scholar 

  18. Y. Su, L. Zhang, W. Wang, Internal polar field enhanced H2 evolution of BiOIO3 nanoplates. Int. J. Hydrog. Energy 41, 10170–10177 (2016)

    Article  CAS  Google Scholar 

  19. F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han, T. Ma, Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv. Funct. Mater. 28, 1804284 (2018)

    Article  Google Scholar 

  20. H. Yu, J. Li, Y. Zhang, S. Yang, K. Han, F. Dong, T. Ma, H. Huang, Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem. Int. Ed. 58, 3880–3884 (2019)

    Article  CAS  Google Scholar 

  21. F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, The role of polarization in photocatalysis. Angew. Chem. Int. Ed. 58, 2–15 (2019)

    Article  Google Scholar 

  22. H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem. Int. Ed. 56, 11860–11864 (2015)

    Article  Google Scholar 

  23. R. Zhou, J. Wu, J. Zhang, H. Tian, P. Liang, T. Zeng, P. Lu, J. Ren, T. Huang, X. Zhou, P. Sheng, Photocatalytic oxidation of gas-phase Hg0 on the exposed reactive facets of BiOI/BiOIO3 heterostructures. Appl. Catal. B 204, 465–474 (2017)

    Article  CAS  Google Scholar 

  24. F. Chen, H. Huang, Y. Zhan, T. Zhang, Achieving UV and visible-light photocatalytic activity enhancement of AgI/BiOIO3 heterostructure: decomposition for diverse industrial contaminants and high mineralization ability. Chin. Chem. Lett. 28, 2244–2250 (2017)

    Article  CAS  Google Scholar 

  25. X. Sun, J. Wu, Q. Li, Q. Liu, Y. Qi, L. You, Z. Ji, P. He, P. Sheng, J. Ren, W. Zhang, J. Lu, J. Zhang, Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron–hole pairs. Appl. Catal. B 218, 80–90 (2017)

    Article  CAS  Google Scholar 

  26. S.D. Nguyen, J. Yeon, S.H. Kim, P.S. Halasyamani, BiO(IO3): a new polar iodate that exhibits an Aurivillius-type (Bi2O2)2+ layer and a large SHG response. J. Am. Chem. Soc. 133, 12422–12425 (2011)

    Article  CAS  Google Scholar 

  27. I. Ardelean, S. Cora, V. Ioncu, Structural investigation of CuO–Bi2O3–B2O3 glasses by FT-IR, Raman and UV–VIS spectroscopies. J. Optoelectron. Adv. Mater. 8, 1843–1847 (2006)

    CAS  Google Scholar 

  28. X. Qi, M. Gu, X. Zhu, J. Wu, H. Long, K. He, Q. Wu, Fabrication of BiOIO3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury. Chem. Eng. J. 285, 11–19 (2016)

    Article  CAS  Google Scholar 

  29. A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007)

    Article  CAS  Google Scholar 

  30. H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7, 482–492 (2015)

    Article  CAS  Google Scholar 

  31. L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal. B 142–143, 1 (2013)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Thailand Research Fund (TRF) for providing financial support through the Royal Golden Jubilee Ph.D. Program, and Center of Excellence in Materials Science and Technology, Chiang Mai University, for financial support under the Administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Titipun Thongtem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patiphatpanya, P., Phuruangrat, A., Thongtem, S. et al. The Influence of pH on Phase and Morphology of BiOIO3 Nanoplates Synthesized by Microwave-Assisted Method and Their Photocatalytic Activities. J Inorg Organomet Polym 30, 869–878 (2020). https://doi.org/10.1007/s10904-019-01282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01282-1

Keywords

Navigation