Skip to main content
Log in

Calcium Iron Layered Double Hydroxide/Poly(vinyl chloride) Nanocomposites: Synthesis, Characterization and Cd2+ Removal Behavior

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Poly(vinyl chloride) (PVC) and other thermoplastics have received more attention in the last decades due to their high fire resistance, hydrophobicity, and flexibility. To improve the thermal stability of these classes of polymers, heat stabilizers should be used. Layered double hydroxides (LDHs) are a green and inexpensive class of heat stabilizers. In this study at first, the co-precipitation method was used to prepare nanostructure calcium/iron layered double hydroxide (Ca/Fe-LDH), and then it was organo-modified with citrate as a green and environmentally friendly anion. In the next step, it was used as a nanofiller for improving the thermal properties of the PVC matrix. Accordingly, LDH-Cit/PVC nanocomposites (NCs) with different amounts of LDH-Cit (5, 10 and 15 wt%) were synthesis by ultrasonic irradiation technique. The structural, morphological, and thermal properties of the synthesized NCs were evaluated with XRD, FT-IR, FE-SEM, TGA techniques. By introducing of LDH-Cit in the NCs, the residue at 800 °C was increased from 10 to 23% compared to pure PVC. The NCs ability to removing Cd2+ metal ion and the effects of time, pH, and Cd2+ concentration on the removal efficiency of Cd2+ were studied. Due to the increase of the adsorbent mass and removal efficiency of Cd2+, the 60 mg L−1 of Cd2+ concentration and pH of 7 were chosen as the optimized condition. Also, kinetics studies on the experimental data for adsorbents showed acceptable adaptation with the Langmuir isotherm and pseudo-second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Arshadi, H. Eskandarloo, M.K. Abdolmaleki, A. Karimi Abbaspourrad, ACS Sustain. Chem. Eng. 6(10), 13332–13348 (2018)

    Article  CAS  Google Scholar 

  2. H. Lu, Q. Li, H. Xiao, R. Wang, D. Xie, Am. J. Anal. Chem. 5, 547 (2014)

    Article  Google Scholar 

  3. F. Yang, S. Sun, X. Chen, Y. Chang, F. Zha, Z. Lei, Appl. Clay Sci. 123, 134–140 (2016)

    Article  CAS  Google Scholar 

  4. J. Yin, T. Wu, J. Song, Q. Zhang, S. Liu, R. Xu, H. Duan, Chem. Mater. 23, 4756–4764 (2011)

    Article  CAS  Google Scholar 

  5. S. Duan, W. Ma, Z. Cheng, P. Zong, X. Sha, F. Meng, Colloids Surf. A 490, 250–257 (2016)

    Article  CAS  Google Scholar 

  6. F. Fu, Q. Wang, J. Environ. Manag. 92, 407–418 (2011)

    Article  CAS  Google Scholar 

  7. S.S. Gupta, K.G. Bhattacharyya, Adv. Colloids Interface Sci. 162, 39–58 (2011)

    Article  Google Scholar 

  8. A. Saeed, M. Iqbal, M.W. Akhtar, J. Hazard. Mater. 117, 65–73 (2005)

    Article  CAS  Google Scholar 

  9. A.S.K. Kumar, S. Kalidhasan, V. Rajesh, N. Rajesh, Ind. Eng. Chem. Res. 51, 58–69 (2011)

    Article  Google Scholar 

  10. M. Dinari, P. Asadi, S. Khajeh, New J. Chem. 39, 8195–8203 (2015)

    Article  CAS  Google Scholar 

  11. E.P. Giannelis, Adv. Mater. 8, 29–35 (1996)

    Article  CAS  Google Scholar 

  12. I. Khelifa, A. Belmokhtar, R. Berenguer, A. Benyoucef, E. Morallon, J. Mol. Struct. 1178, 327–332 (2018)

    Article  Google Scholar 

  13. A. Belalia, A. Zehhaf, A. Benyoucef, Polym. Sci. Ser. B 60, 816–824 (2018)

    Article  CAS  Google Scholar 

  14. B.K. Deka, T.K. Maji, M. Mandal, Polym. Bull. 67, 1875–1892 (2011)

    Article  CAS  Google Scholar 

  15. V.K. Thakur, R.K. Gupta, Chem. Rev. 116, 4260–4317 (2016)

    Article  Google Scholar 

  16. T. Tongesayi, J. Kugara, S. Tongesayi, Environ. Geochem. Health 40, 375–381 (2018)

    Article  CAS  Google Scholar 

  17. S. Daikh, F. Zeggai, A. Bellil, A. Benyoucef, J. Phys. Chem. Solids 121, 78–84 (2018)

    Article  CAS  Google Scholar 

  18. W.T. Reichle, Solid State Ionics 22, 135–141 (1986)

    Article  CAS  Google Scholar 

  19. D. G. Evans, R. C. Slade, in Layered Double Hydroxides (Springer, Berlin, 2006), pp. 1–87

  20. K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, J. Therm. Anal. Calorim. 135, 2089–2100 (2019)

    Article  CAS  Google Scholar 

  21. F. Leroux, J.-P. Besse, Chem. Mater. 13, 3507–3515 (2001)

    Article  CAS  Google Scholar 

  22. S.T. Liu, P.P. Zhang, K.K. Yan, Y.H. Zhang, Y. Ye, X.G. Chen, J. Appl. Polym. Sci. 132, 42524 (2015)

    Google Scholar 

  23. F.J. Labuschagne, D.M. Molefe, W.W. Focke, I. Van der Westhuizen, H.C. Wright, M.D. Royeppen, Polym. Degrad. Stab. 113, 46–54 (2015)

    Article  CAS  Google Scholar 

  24. O. Rahmanian, M. Dinari, S. Neamati, Environ. Sci. Pollut. Res. 25, 36267–36277 (2018)

    Article  CAS  Google Scholar 

  25. G. Tan, Z. Li, H. Yuan, D. Xiao, Sep. Sci. Technol. 49, 1566–1573 (2014)

    Article  CAS  Google Scholar 

  26. D. Van Krevelen, Polymer 16, 615–620 (1975)

    Article  Google Scholar 

  27. S.K. Mahto, S. Das, A. Ranjan, S.K. Singh, P. Roy, N. Misra, RSC Adv. 5, 45231–45238 (2015)

    Article  Google Scholar 

  28. Y.-Z. Bao, Z.-M. Huang, Z.-X. Weng, J. Appl. Polym. Sci. 102, 1471–1477 (2006)

    Article  CAS  Google Scholar 

  29. S. Mallakpour, M. Hatami, Appl. Clay Sci. 149, 28–40 (2017)

    Article  CAS  Google Scholar 

  30. S. Mallakpour, M. Dinari, J. Inorg. Organomet. Polym. Mater. 22, 929–937 (2012)

    Article  CAS  Google Scholar 

  31. Y. Kuroda, Y. Miyamoto, M. Hibino, K. Yamaguchi, N. Mizuno, Chem. Mater. 25, 2291–2296 (2013)

    Article  CAS  Google Scholar 

  32. Y. Li, S. Wu, L. Pang, Q. Liu, Z. Wang, A. Zhang, Constr. Build. Mater. 172, 584–596 (2018)

    Article  CAS  Google Scholar 

  33. S. Mallakpour, R. Aalizadeh, Synth. React. Inorg. Met. Org. NanoMet. Chem. 44, 1450–1456 (2014)

    Article  CAS  Google Scholar 

  34. C. Liu, Y. Luo, Z. Jia, B. Zhong, S. Li, B. Guo, D. Jia, Express Polym. Lett. 5(7), 591–603 (2011)

    Article  CAS  Google Scholar 

  35. M. Dinari, R. Tabatabaeian, Carbohydr. Polym. 192, 317–326 (2018)

    Article  CAS  Google Scholar 

  36. V. Devi, M. Selvaraj, P. Selvam, A.A. Kumar, S. Sankar, K. Dinakaran, J. Environ. Chem. Eng. 5, 4539–4546 (2017)

    Article  CAS  Google Scholar 

  37. G. Mohammadnezhad, R. Soltani, S. Abad, M. Dinari, J. Appl. Polym. Sci. 134, 45383 (2017)

    Article  Google Scholar 

  38. Z. Hu, G. Chen, J. Mater. Chem. A 2, 13593–13601 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the Research Affairs Division of Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Dinari.

Ethics declarations

Conflict of interest

The authors stated that there are no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinari, M., Roghani, N. Calcium Iron Layered Double Hydroxide/Poly(vinyl chloride) Nanocomposites: Synthesis, Characterization and Cd2+ Removal Behavior. J Inorg Organomet Polym 30, 808–819 (2020). https://doi.org/10.1007/s10904-019-01265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01265-2

Keywords

Navigation