Skip to main content
Log in

A Novel Magnetic Cd(II) Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cadmium Ions from Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

To improve the adsorption capacity of Cd(II) ions, Cd(II) ions were imprinted on the surface of aminoethyl chitosan (AECS), which was coated on Fe3O4@SiO2 nanoparticles. A novel magnetic Cd(II) ion-imprinted polymer (Cd(II)-IIP) was synthesized, characterized, and applied to the selective separation of Cd(II) ions from aqueous solution. The adsorption–desorption properties and selectivity of Cd(II)-IIP and a non-imprinted polymer (Cd(II)-NIP) were investigated. The optimum pH and equilibrium binding time were established at pH 6.0 and 60 min, respectively. Kinetics studies demonstrated that the adsorption process proceeded according to a pseudo-first or second order model, while the adsorption isotherms agreed with the Langmuir model. The maximum adsorption capacities of Cd(II)-IIP and Cd(II)-NIP toward Cd(II) ions, as calculated by the Langmuir equation, at pH 6.0 and 25 °C were 26.1 and 6.7 mg/g, respectively. The imprinted polymer showed higher selectivity toward Cd(II) ions compared to the non-imprinted polymer. The relative selectivity factor (βr) values of Cd(II)/Cu(II), Cd(II)/Cr(II), and Cd(II)/Pb(II) were 3.315, 3.875, and 2.061, respectively. In addition, Cd(II) ions adsorbed on the Cd(II)-IIP adsorbent could be easily released using 0.1 M HNO3, thus showing good material stability and reusability. The adsorption capacity of Cd(II)-IIP was retained at 74% after undergoing six adsorption–desorption cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92(3), 407–418 (2011)

    CAS  Google Scholar 

  2. S.A. Abo-El-Enein, M.A. Eissa, A.A. Diafullah, M.A. Rizk, F.M. Mohamed, Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash. J. Hazard. Mater. 172(2–3), 574–579 (2009)

    CAS  PubMed  Google Scholar 

  3. W.S. Wan Ngah, M.A. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99(10), 3935–3948 (2008)

    CAS  PubMed  Google Scholar 

  4. S. Squadrone, M. Prearo, P. Brizio, S. Gavinelli, M. Pellegrino, T. Scanzio, S. Guarise, A. Benedetto, M.C. Abete, Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 90(2), 358–365 (2013)

    CAS  PubMed  Google Scholar 

  5. A. Bernard, Renal and Neurological Effects Heavy Metals in the Environment. Encycl Environ Health (2011). https://doi.org/10.1016/B978-0-444-52272-6.00615-2

    Article  Google Scholar 

  6. M. Vigeh, K. Yokoyama, A.A. Shinohara, M. Afshinrokh, Increase in blood heavy metals in early pregnancy induce hypertension in pregnant women. Toxicol. Lett. 205, 197–197 (2011)

    Google Scholar 

  7. M. Kumar, B.P. Tripathi, V.K. Shahi, Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. J. Hazard. Mater. 172(2–3), 1041–1048 (2009)

    CAS  PubMed  Google Scholar 

  8. Y. Xi, Y. Luo, J. Luo, X. Luo, Removal of cadmium(II) from wastewater using novel cadmium ion-imprinted polymers. J. Chem. Eng. Data 60(11), 3253–3261 (2015)

    CAS  Google Scholar 

  9. L.P. Lingamdinne, Y.Y. Chang, J.K. Yang, J. Singh, E.H. Choi, M. Shiratani, J.R. Koduru, P. Attri, Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 307, 74–84 (2017)

    CAS  Google Scholar 

  10. J.K. Bediako, W. Wei, S. Kim, Y.S. Yun, Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber. J. Hazard. Mater. 299, 550–561 (2015)

    CAS  PubMed  Google Scholar 

  11. M.I. Shariful, S.B. Sharif, J.J.L. Lee, U. Habiba, B.C. Ang, M.A. Amalina, Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydr. Polym. 157, 57–64 (2017)

    CAS  PubMed  Google Scholar 

  12. C. Ren, X. Ding, W. Li, H. Wu, H. Yang, Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups. J. Chem. Eng. Data 62, 1865–1875 (2017)

    CAS  Google Scholar 

  13. D. Mohan, C.U. Pittman Jr., Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137(2), 762–811 (2006)

    CAS  PubMed  Google Scholar 

  14. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30(1), 38–70 (2005)

    CAS  Google Scholar 

  15. A. Kucinska, A. Cyganiuk, J.P. Lukaszewicz, A microporous and high surface area active carbon obtained by the heat-treatment of chitosan. Carbon 50(8), 3098–3101 (2012)

    CAS  Google Scholar 

  16. X. Sun, Q. Li, L. Yang, H. Liu, Removal of chromium(VI) from wastewater using weakly and strongly basic magnetic adsorbents: adsorption/desorption property and mechanism comparative studies. RSC Adv. 6, 18471–18482 (2016)

    CAS  Google Scholar 

  17. K. El-Tahlawy, R. Venditti, J. Pawlak, Effect of alkyl ketene dimer reacted starch on the properties of starch microcellular foam using a solvent exchange technique. Carbohydr. Polym. 73, 133–142 (2008)

    CAS  Google Scholar 

  18. A. Petrella, V. Petruzzelli, E. Ranieri, V. Catalucci, D. Petruzzelli, Sorption of Pb(II), Cd(II) and Ni(II) from single- and multimetal solutions by recycled waste porous glass. Chem. Eng. Commun. 203(7), 940–947 (2016)

    CAS  Google Scholar 

  19. P. Rodríguezestupiñán, A. Erto, L. Giraldo, J.C. Morenopiraján, Adsorption of Cd (II) on modified granular activated carbons: isotherm and column study. Molecules 22(12), 2280 (2017)

    Google Scholar 

  20. A. Petrella, D. Spasiano, P. Acquafredda, N. De Vietro, E. Ranieri, P. Cosma, V. Rizzi, V. Petruzzelli, D. Petruzzelli, Heavy metals retention (Pb(II), Cd (II), Ni (II)) from single and multimetal solutions by natural biosorbents from the olive oil milling operations. Process. Saf. Environ. 114, 79–90 (2018)

    CAS  Google Scholar 

  21. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211–212, 317–331 (2012)

    PubMed  Google Scholar 

  22. M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 32, 257–264 (2001)

    Google Scholar 

  23. Y. Cao, L. Wen, F. Svec, T. Tan, Y. Lv, Magnetic AuNP@Fe3O4, nanoparticles as reusable carriers for reversible enzyme immobilization. Chem. Eng. J. 286, 272–281 (2016)

    CAS  Google Scholar 

  24. A.S. de Dios, M.E. Diaz-Garcia, Multifunctional nanoparticles: analytical prospects. Anal. Chim. Acta 666(1–2), 1–22 (2010)

    PubMed  Google Scholar 

  25. K. Zargoosh, H. Abedini, A. Abdolmaleki, M.R. Moldavians, Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Ind. Eng. Chem. Res. 52, 14944–14954 (2013)

    CAS  Google Scholar 

  26. Y.C. Lin, H.P. Wang, F. Gohar, M.H. Ullah, X. Zhang, D.F. Xie, H. Fang, J. Huang, J.X. Yang, Preparation and copper ions adsorption properties of thiosemicarbazide chitosan from squid pens. Int. J. Biol. Macromol. 95, 476–483 (2017)

    CAS  PubMed  Google Scholar 

  27. Y. Ren, X. Wei, M. Zhang, Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent. J. Hazard. Mater. 158(1), 14–22 (2008)

    CAS  PubMed  Google Scholar 

  28. S. Cen, W. Li, S. Xu, Z. Wang, Y. Tang, H. Wang, C. Wei, Application of magnetic Cd2+ ion-imprinted mesoporous organosilica nanocomposites for mineral wastewater treatment. RSC Adv. 7, 7996–8003 (2017)

    CAS  Google Scholar 

  29. J. Huang, H. Xie, S. Hu, T. Xie, J. Gong, C. Jiang, Q. Ge, Y. Wu, S. Liu, Y. Cui, J. Mao, L. Mei, Preparation, characterization, and biochemical activities of N-(2-carboxyethyl)chitosan from squid pens. J. Agric. Food Chem. 63, 2464–2471 (2015)

    CAS  PubMed  Google Scholar 

  30. J.Y. Je, S.K. Kim, Antimicrobial action of novel chitin derivative. Biochim. Biophys. Acta 1760, 104–109 (2006)

    CAS  PubMed  Google Scholar 

  31. X.Q. Liu, J.M. Xing, Y.P. Guan, G.B. Shan, H.Z. Liu, Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization. Colloids Surf. A 238, 127–131 (2004)

    CAS  Google Scholar 

  32. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Google Scholar 

  33. A. Hirai, H. Odani, A. Nakajima, Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 26, 87–94 (1991)

    CAS  Google Scholar 

  34. A.A. Ehab, A.T. Dina, Y.N. Mostafa, A tunable template-assisted hydrothermal synthesis of hydroxysodalite zeolite nanoparticles using various aliphatic organic acids for the removal of zinc(II) ions from aqueous media. J. Inorg. Organomet. Polym Mater. 29(1), 229–249 (2019)

    Google Scholar 

  35. B. Liu, X. Lv, X. Meng, G. Yu, D. Wang, Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chem. Eng. J. 220, 412–419 (2013)

    CAS  Google Scholar 

  36. E.J. Dunn, X. Zhang, D. Sun, M.F.A. Goosen, Synthesis of N-(aminoalkyl) chitosan for microcapsules. J. Appl. Polym. Sci. 50, 353–365 (2010)

    Google Scholar 

  37. Z. Xu, Y. Feng, X. Liu, M. Guan, C. Zhao, H. Zhang, Synthesis and characterization of Fe3O4@SiO2@poly-l-alanine, peptide brush-magnetic microspheres through NCA chemistry for drug delivery and enrichment of BSA. Colloids Surf. B 81, 503–507 (2010)

    CAS  Google Scholar 

  38. L. Wang, Y. Sun, J. Wang, A. Yu, H. Zhang, D. Dong, Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloids Surf. B 84, 484–490 (2011)

    CAS  Google Scholar 

  39. D. Shao, K. Xu, X. Song, J. Hu, W. Yang, C. Wang, Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. J. Colloid Interface Sci. 336, 526–532 (2009)

    CAS  PubMed  Google Scholar 

  40. I.F. Nata, G.W. Salim, C.K. Lee, Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal. J. Hazard. Mater. 183(1–3), 853–858 (2010)

    CAS  PubMed  Google Scholar 

  41. Y. Zhang, X. Liu, J. Nie, L. Yu, Y. Zhong, C. Huang, Improve the catalytic activity of α-Fe2O3, particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface. J. Solid State Chem. 184, 387–390 (2011)

    CAS  Google Scholar 

  42. A. Dolgormaa, C.J. Lv, Y. Li, J. Yang, J.X. Yang, P. Chen, H.P. Wang, J. Huang, Adsorption of Cu(II) and Zn(II) Ions from Aqueous Solution by Gel/PVA-Modified Super-Paramagnetic Iron Oxide Nanoparticles. Molecules 23(11), 2982 (2018)

    PubMed Central  Google Scholar 

  43. Buhani, Narsito, Nuryono, E.S. Kunarti, Production of metal ion imprinted polymer from mercapto-silica through so-gel process as selective adsorbent of cadmium. Desalination 251, 83–89 (2010)

    CAS  Google Scholar 

  44. A. Aklil, M. Mouflih, S. Sebti, Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent. J. Hazard. Mater. 112, 183–190 (2004)

    CAS  PubMed  Google Scholar 

  45. Buhani, Suharso, Sumadi, Adsorption kinetics and isotherm of Cd(II) ion on Nannochloropsis sp biomass imprinted ionic polymer. Desalination 259, 140–146 (2010)

    CAS  Google Scholar 

  46. Y.S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 40, 119–125 (2006)

    CAS  PubMed  Google Scholar 

  47. Y.S. Ho, G. Mckay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. 76, 332–340 (1998)

    CAS  Google Scholar 

  48. Z. Popovii, G. Pavlovii, M. Vinkovii, D. Vikiivii, M.R. Linarii, Coordination modes of 3-hydroxypicolinic acid (OH-picH): synthesis and characterization of cadmium(II) complexes. Crystal and molecular structures of [CdX(OH-pic)(OH-picH)(H2O)]2 X = Cl-, Br-. Polyhedron 25(12), 2353–2362 (2006)

    Google Scholar 

  49. C.W. Belock, A. Cetin, N.V. Barone, C.J. Ziegler, Transition Metal Coordination Chemistry of N, N-Bis(2-{pyrid-2-ylethyl})hydroxylamine. Inorg. Chem. 47(16), 7114–7120 (2008)

    CAS  PubMed  Google Scholar 

  50. H. Soltani, A. Belmokhar, F.Z. Zeggal, A. Benyoucef, S. Bousalem, K. Bachari, Copper(II) removal from aqueous solutions by PANI-clay hybrid material: fabrication, characterization, adsorption and kinetics study. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-018-01058-z

    Article  Google Scholar 

  51. B. Zhang, Y. Wu, Y. Fan, Synthesis of Novel Magnetic NiFe2O4 Nanocomposite Grafted Chitosan and the Adsorption Mechanism of Cr(VI). J. Inorg. Organomet. Polym Mater. 29, 290–301 (2019)

    CAS  Google Scholar 

  52. M.H. Karaoglu, S. Zor, M. Ugurlu, Biosorption of Cr(III) from solutions using vineyard pruning waste. Chem. Eng. J. 159, 98–106 (2010)

    CAS  Google Scholar 

  53. Y. Liu, X. Hu, M. Meng, Z. Liu, L. Ni, X. Meng, J. Qiu, RAFT-mediated microemulsion polymerization to synthesize a novel high-performance graphene oxide-based cadmium imprinted polymer. Chem. Eng. J. 302, 609–618 (2016)

    CAS  Google Scholar 

  54. M. Imamoglu, Adsorption of Cd(II) Ions onto activated carbon prepared from hazelnut husks. J. Disper. Sci. Technol. 34(9), 1183–1187 (2013)

    CAS  Google Scholar 

  55. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Kinetics and equilibrium adsorption of iron (II), lead (II), and copper (II) onto activated carbon prepared from olive stone waste. Desalin. Water Treat. 52(40–42), 7887–7897 (2014)

    CAS  Google Scholar 

  56. J. Zhang, Preparation, characterization and application of thiosemicarbazide grafted multiwalled carbon nanotubes for solid-phase extraction of Cd(II), Cu(II) and Pb(II) in environmental samples. J. Environ. Sci. 25(11), 2331–2337 (2013)

    CAS  Google Scholar 

  57. J. Goel, K. Kadirvelu, A.C. Rajagopal, V.K. Garg, Cadmium(II) Uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach. Ind. Eng. Chem. Res. 45(19), 6531–6537 (2006)

    CAS  Google Scholar 

  58. K. Yang, J. Fox, DPF soot as an adsorbent for Cu(II), Cd(II), and Cr(VI) compared with commercial activated carbon. Environ. Sci. Pollut. Res. 25(9), 8620–8635 (2018)

    CAS  Google Scholar 

  59. D. Kołodyńska, J. Krukowska, P. Thomas, Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 307, 353–363 (2017)

    Google Scholar 

  60. P. Brown, I.A. Jefcoat, D. Parrish, S. Gill, E. Graham, Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Adv. Environ. Res. 4(1), 19–29 (2000)

    Google Scholar 

  61. M. Ciopec, C. Davidescu, A. Negrea, L. Lupa, P. Negrea, A. Popa, C. Muntean, Use of D2EHPA-impregnated XAD7 resin for the removal of Cd(II) and Zn(II) from aqueous solutions. Environ. Eng. Manag. J. 10(10), 1597–1608 (2011)

    CAS  Google Scholar 

  62. A.S.A. Aziz, L.A. Manaf, H.C. Man, N.S. Kumar, Equilibrium studies and dynamic behavior of cadmium adsorption by palm oil boiler mill fly ash (POFA) as a natural low-cost adsorbent. Desalin. Water Treat. 54(7), 1956–1968 (2015)

    Google Scholar 

  63. S.A. Ong, M. Hirata, T. Hano, Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge. Appl. Water Sci. 3(1), 321–325 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Grant No. 41771509), Zhejiang Science and Technology Project (Grant Nos. 2018C37052, 2016C37078, 2008C14067) and SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Huang or Junxing Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Lin, Y., Li, Y. et al. A Novel Magnetic Cd(II) Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cadmium Ions from Aqueous Solution. J Inorg Organomet Polym 29, 1874–1885 (2019). https://doi.org/10.1007/s10904-019-01148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01148-6

Keywords

Navigation