Skip to main content
Log in

A Comparative Study of Conventional and Microwave Sintering of BaCe1 − xGdxO3 − δ Ceramic

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The nanoparticles of BaCe1 − xGdxO3 − δ (BCGO) with x = 0.01 and 0.02 mol% Gd3+ respectively, were synthesized by the polymeric precursor method. The nanocrystals analyzed by X-ray diffraction (XRD) displayed an orthorhombic perovskite-type structure. The sintered samples were characterized using Archimedes method, field emission scanning electronic microscopy (FE-SEM), and dilatometric measurements are reported. The values obtained relative to the average crystallite sizes calculated by the Scherrer equation were found to be dependent on Gd dopant concentration in the samples under investigation. The samples were sintered via both conventional and microwave sintering methods at 1480 °C for 4 h and at 1370 °C for 1 h respectively. By applying a heating rate of 50 °C min− 1 in a microwave oven, a satisfactory final density (95.1% of the theoretical density) was obtained using relatively lower temperatures compared to the conventional method. Both sintering methods were successfully employed towards obtaining dense BCGO ceramic. Comparatively, however, domestic microwave sintering was found to bear advantages over conventional sintering. Among such advantages include rapid heating, selective material coupling in addition to the enhancement of reaction kinetics. These relevant merits, in essence, render microwave sintering suitably more attractive for the synthesis of diverse ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Shimada, C. Wen, H. Taniguchi, J. Otomo, H. Takahashi, J. Powder Sources 131, 289–292 (2004)

    Article  CAS  Google Scholar 

  2. G.Y. Meng, Q.L. Ma, R.R. Peng, X.Q. Liu, Solid State Ion 178, 697–703 (2007)

    Article  CAS  Google Scholar 

  3. A.S. Kumar, R. Balaji, S. Jayakumar, C. Pradeep, Mater. Chem. Phys. 182, 520–525 (2016)

    Article  CAS  Google Scholar 

  4. H. Uchida, H. Kumura, H. Iwahara, J. Appl. Electrochem. 20, 390–394 (1990)

    Article  CAS  Google Scholar 

  5. K. Ouzaouit, A. Benlhachemi, H. Benyaich, L. Aneflous, A. Marrouche, J.R. Gavarri, J.A. Musso, J. Phys. 123, 125–130 (2005)

    CAS  Google Scholar 

  6. P.H. Chiang, D. Eng, M. Stoukides, Solid State Ion. 61, 99–103 (1993)

    Article  CAS  Google Scholar 

  7. H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B 106, 12441–12447 (2002)

    Article  CAS  Google Scholar 

  8. N. Radenahmad, A. Afif, P.I. Petra, S.M.H. Rahman, S.-G. Eriksson, A.K. Azad, Renew. Sustain. Energy Rev. 57, 1347–1358 (2016)

    Article  CAS  Google Scholar 

  9. X.Z. Fu, J.L. Luo, A.R. Sanger, N. Luo, K.T. Chuang, J. Power Sources 195, 2659–2663 (2010)

    Article  CAS  Google Scholar 

  10. Z. Tao, Q. Zhang, X. Xi, G. Hou, L. Bi, Electrochem. Commun. 72, 19–22 (2016)

    Article  CAS  Google Scholar 

  11. N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells. (Elsevier, Amsterdam, 1995)

    Google Scholar 

  12. K. Gdula-, A. Kasica, S. Mielewczyk-Gryn, P. Molin, A. Jasinski, B. Krupa, M.Gazda Kusz, Solid State Ion. 225, 245–249 (2012)

    Article  Google Scholar 

  13. R. Muccillo, E.N.S. Muccillo, M. Kleitz, J. Eur. Ceram. Soc. 32, 2311–2316 (2012)

    Article  CAS  Google Scholar 

  14. A. Venkatasubramanian, P. Gopalan, T.R.S. Prasanna, J. Hydrogen Energy 35, 4597–4605 (2010)

    Article  CAS  Google Scholar 

  15. S. Wang, L. Zhang, L. Zhang, K. Brinkman, F. Chen, Electrochim. Acta 87, 194–200 (2013)

    Article  CAS  Google Scholar 

  16. Q.L. Ma, J.F. Gao, D.Y. Zhou, Y.J. Lin, R.Q. Yan, G.Y. Meng, Adv. Appl. Ceram. 107, 14–18 (2008)

    Article  CAS  Google Scholar 

  17. L. Zhang, W. Yang, Int. J. Hydrogen Energy 37, 8635–8640 (2012)

    Article  CAS  Google Scholar 

  18. M. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y. Choi, Mater. Today 14, 534–546 (2011)

    Article  CAS  Google Scholar 

  19. H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, MRS Bull. 30, 591–595 (2005)

    Article  CAS  Google Scholar 

  20. C. Herring, J. Appl. Phys. 21, 301–303 (1950)

    Article  CAS  Google Scholar 

  21. H. Matsumoto, I. Nomura, S. Okada, T. Ishihara, Solid State Ion. 179, 1486–1489 (2008)

    Article  CAS  Google Scholar 

  22. Y.R. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, J. Mater. Chem. 20, 8158–8166 (2010)

    Article  CAS  Google Scholar 

  23. P. Babilo, T. Uda, S.M. Haile, J. Mater. Res. 22, 1322–1330 (2007)

    Article  CAS  Google Scholar 

  24. J.H. Tong, D. Clark, M. Hoban, R. O’Hayre, Solid State Ion. 181, 496–503 (2010)

    Article  CAS  Google Scholar 

  25. J.H. Tong, D. Clark, L. Bernau, M. Sanders, R. O’Hayre, J. Mater. Chem. 20, 6333–6341 (2010)

    Article  CAS  Google Scholar 

  26. X.D. Dang, M. Wei, B.B. Fan, K.K. Guan, R. Zhang, W.M. Long, H.S. Zhang, Mater. Res. Express 4, 1–2 (2017)

    Google Scholar 

  27. B.Z. Song, B.A. Zhao, L. Fan, B.B. Fan, H.L. Wang, X.Q. Guo, R. Zhang, Int. J. Appl. Ceram. Technol. 14, 880–888 (2017)

    Article  CAS  Google Scholar 

  28. B.B. Fan, W. Li, B.Z. Dai, K.K. Guan, R. Zhang, H.X. Li, Process. Appl. Ceram. 10, 243–248 (2016)

    Article  Google Scholar 

  29. X.X. Pian, B.B. Fan, H. Chen, B. Zhao, X. Zhang, R. Zhang, Ceram. Int. 40, 10483–10488 (2014)

    Article  CAS  Google Scholar 

  30. S. Manivannan, A. Joseph, P.K. Sharma, K.C.J. Raju, D. Das, Ceram. Int. 41, 10923–10933 (2015)

    Article  CAS  Google Scholar 

  31. M.A.A.M. Salleh, S.D. McDonald, Y. Terada, H. Yasuda, K. Nogita, Mater. Des. 82, 136–147 (2015)

    Article  Google Scholar 

  32. H. Yang, X. Zhou, J. Yu, H. Wang, Z. Huang, Ceram. Int. 41, 11651–16154 (2015)

    Article  CAS  Google Scholar 

  33. C.-H. Hua, C.-C. Chou, Ceram. Int. 41, S708–S712 (2015)

    Article  CAS  Google Scholar 

  34. D.E. Clark, D.C. Folz, J.K. West, Mater. Sci. Eng. A, 287, 153–158 (2000)

    Article  Google Scholar 

  35. M.A. Ramirez, P.R. Bueno, E. Longo, J. A. Varela, J. Phys. D 41, 1–5 (2008)

    Google Scholar 

  36. D. Pergolesi, E. Fabbri, A. D’Epifanio, E. Di Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino, E. Traversa, Nat. Mater. 9, 846–852 (2010)

    Article  CAS  Google Scholar 

  37. S. Singh, D. Gupta, V. Jain, A.K. Sharma, Mater. Manuf. Processes 30, 1–29 (2015)

    Article  CAS  Google Scholar 

  38. A. Harabi, D. Belamri, N. Karboua, F.Z. Mezahi, J. Therm. Anal. Calorim. 104, 383–388 (2011)

    Article  CAS  Google Scholar 

  39. R. German, Sintering: from Empirical Observations to Scientific Principles (Butterworth-Heinemann, Oxford, 2014) pp. 102–105

    Google Scholar 

  40. M.J. Godinho, C. Ribeiro, R.F. Goncalves, E. Longo, E.R. Leite, J. Therm. Anal. Calorim. 111, 1351–1355 (2013)

    Article  CAS  Google Scholar 

  41. E.R. Leite, M.A.L. Nobre, M.D. Ribeiro, E. Longo, J.A. Varela, J. Mater. Sci. 33, 4791–4795 (1998)

    Article  CAS  Google Scholar 

  42. M.A.L. Nobre, E. Longo, E.R. Leite, J.A. Varela, Mater. Lett. 28, 215–220 (1996)

    Article  CAS  Google Scholar 

  43. W.D. Kingery, M. Berg, J. Appl. Phys. 26, 1205–1212 (1955)

    Article  CAS  Google Scholar 

  44. J. Tong, D. Clark, M. Hoban, R. O’Hayre, Solid State Ion. 181, 496–503 (2010)

    Article  CAS  Google Scholar 

  45. A.P. Moura, L.H. Oliveira, I.L. V.Rosa, C.S. Xavier, P.N. Lisboa-Filho, M.S. Li, F.A. La Porta, E. Longo, J.A. Varela, Sci. World J. 2015, 1–8 (2015)

    Article  Google Scholar 

  46. W. Ling, J. Chao, D. Lei, L. Yuehua, Ceram. Int. 39, 7959–7966 (2013)

    Article  Google Scholar 

  47. H. Zhou, L. Dai, L. Jia, J. Zhu, Y. Li, L. Wang, Int. J. Hydrogen Energy, 40, 8980–8988 (2015)

    Article  CAS  Google Scholar 

  48. A.S. Kumar, R. Balaji, P. Puviarasu, S. Jayakumar, Optoeletron. Adv. Mater—Rapid Commun. 9, 788–791 (2015)

    CAS  Google Scholar 

  49. A. Łącz, P. Pasierb, J. Therm. Anal. Calorim. 113, 405–412 (2013)

    Article  Google Scholar 

  50. D. Medvedev, V. Maragou, T. Zhuravleva, A. Demin, E. Gorbova, P. Tsiakaras, Solid State Ion. 182, 41–46 (2011)

    Article  CAS  Google Scholar 

  51. E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras, Solid State Ion. 179, 887–890 (2008)

    Article  CAS  Google Scholar 

  52. L. Pelletier, A. McFarlan, N. Maffei, J. Power Sources 145, 262–265 (2005)

    Article  CAS  Google Scholar 

  53. N. Maffei, L. Pelletier, A. McFarlan, J. Power Sources 136, 24–29 (2004)

    Article  CAS  Google Scholar 

  54. N. Bonanos, B. Ellis, K.S. Knight, M.N. Mahmood, Solid State Ion. 35, 179–188 (1989)

    Article  Google Scholar 

  55. , J. K. Kang, T. H. Dinh, C. H. Lee, H. S. Han, J. S. Lee, V. D. N. Tran, Trans. Electr. Electron. Mater. 18, 1–6 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The Brazilian authors gratefully acknowledge the financial support received from the Brazilian research funding agencies—FAPEG/CAPES (201410267000067), INCTMN/CNPq (573636/2008-7) and FAPESP/CDMF (2013/07296-2), during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Correa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, K.C.M., Gonçalves, R.F., Correa, A.A. et al. A Comparative Study of Conventional and Microwave Sintering of BaCe1 − xGdxO3 − δ Ceramic. J Inorg Organomet Polym 28, 130–136 (2018). https://doi.org/10.1007/s10904-017-0708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0708-4

Keywords

Navigation