Skip to main content

Advertisement

Log in

Microstructure, Crystallographic and Photoluminescence Examination of Ni Doped ZnO Nanoparticles Co-doped with Co by Sol–Gel Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zn0.96−xNi0.04CoxO nanoparticles with different Co concentration from 0 to 6% have been synthesized using sol–gel method. Phase purity of the synthesized samples was confirmed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy. The observed decrease in crystallite size and lattice parameters and also the increase of micro-strain by Co substitution confirmed the substitution of Co2+ instead of Zn2+ ions. Higher optical transmittance and optimal value of energy gap (3.44 eV) found in Zn0.92Ni0.04Co0.04O suggested that it can be taken as possible candidates for the industrial applications especially as transparent electrode. The defects related bluish-green absorption between 483 and 495 nm were due to the existence of oxygen vacancies and intrinsic defects. The strong blue and green band emission was noticed at higher Co-doping concentration due to the generation of new distortion centers in the lattice and surface defects which increases the intensity of green band emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Gordon, M. Kopel, J. Grinblat, E. Banin, S. Margel, J. Mater. Chem. 22, 3614–3623 (2012)

    Article  CAS  Google Scholar 

  2. W.J. Huang, G.C. Fang, C.C. Wang, Eng. Asp. 260, 45–51 (2005)

    Article  CAS  Google Scholar 

  3. T. Xu, L. Zhang, H. Cheng, Y. Zhu, Appl. Catal. B 101, 382–387 (2011)

    Article  CAS  Google Scholar 

  4. J. Huang, Z. Yin, Q. Zheng, Energy Environ. Sci. 4, 3861–3877 (2011)

    Article  CAS  Google Scholar 

  5. Q. Zhang, C. Xie, S. Zhang, A. Wang, B. Zhu, L. Wang, Z. Yang, Sens. Actuators B 110, 370–376 (2005)

    Article  CAS  Google Scholar 

  6. J. Zang, W. Yu, L. Zang, Phys. Lett. A 299, 276–281 (2002)

    Article  Google Scholar 

  7. S.H. Keshmiri, M. Rezaee Rokn-Abadi, Thin Solid Films 382, 230–234 (2001)

    Article  CAS  Google Scholar 

  8. S.B.G. Singh, Shrivastava, D. Jain, S. Pandya, T. Shripathi, V. Ganesan, Bull. Mater. Sci. 33, 581–587 (2010).

    Article  CAS  Google Scholar 

  9. S. Singh, M.S.R. Rao, Phys. Rev. B 80, 045210 (2009)

    Article  Google Scholar 

  10. M.S. Niasari, F. Davar, A. Khansari, J. Alloys Compd. 509, 61–65 (2012)

    Article  Google Scholar 

  11. P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 3457–3461 (2009)

    Article  CAS  Google Scholar 

  12. Y. Wei, D. Hou, S. Qiao, C. Zhen, G. Tang, Physica B 404, 2486–2488 (2009)

    Article  CAS  Google Scholar 

  13. K.C. Sebastian, M. Chawda, L. Jonny, D. Bodas, Mater. Lett. 64, 2269–2272 (2010)

    Article  CAS  Google Scholar 

  14. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, 555 (2000)

    Article  Google Scholar 

  15. I. Suemune, A.B.M.A. Ashrafi, M. Ebihara, M. Kurimoto, H. Kumano, T.Y. Seong, B.J. Kim, Y.W. Ok, Phys. Status Solidi B 241, 640–647 (2004)

    Article  CAS  Google Scholar 

  16. J.T. Prater, S. Ramachandran, A. Tiwari, J. Narayan, J. Electron. Mater. 35, 852–856 (2006)

    Article  CAS  Google Scholar 

  17. M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J. Alloys Compd. 509, 8378–8381 (2011)

    Article  CAS  Google Scholar 

  18. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Microelectron. Eng. 89, 129–132 (2012)

    Article  CAS  Google Scholar 

  19. K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta A 120, 19–24 (2014)

    Article  CAS  Google Scholar 

  20. J.A. Wibowo, N.F. Djaja, R. Saleh, Adv. Mater. Phys. Chem. 3, 48–57 (2013)

    Article  Google Scholar 

  21. H.-J. Lee, G.H. Ryu, S.K. Kim, S.A. Kim, C.H. Lee, S.-Y. Jeong, C.R. Cho, Phys. Status Solidi 241, 2858–2861 (2004)

    Article  CAS  Google Scholar 

  22. D. Chakraborti, S. Ramachandran, G. Trichy, J. Narayan, J.T. Prater, J. Appl. Phys. 101, 053918 (2007)

    Article  Google Scholar 

  23. R.P. Pal Singh, I.S. Hudiara, S. Pandey, S.B. Rana, J. Supercond. Novel Magn. 28, 3685–3691 (2015).

    Article  CAS  Google Scholar 

  24. R.P. Pal Singh, I.S. Hudiara, S. Pandey, S.B. Rana, J. Supercond. Novel. Magn. 29, 819–827 (2016).

    Article  CAS  Google Scholar 

  25. S.B. Rana, R.P. Pal Singh, J. Mater. Sci. 27, 9346–9355 (2016)

    CAS  Google Scholar 

  26. S.B. Rana, R.P. Pal Singh, S. Arya, J. Mater. Sci. doi:10.1007/s10854-016-5843-0.

  27. C.F. Jin, X. Yuan, W.W. Ge, J.M. Hong, X.Q. Xin, Nanotechnology 14, 667–669 (2003)

    Article  CAS  Google Scholar 

  28. H. Udono, Y. Sumi, S. Yamada, I. Kikuma, J. Cryst. Growth 310, 1827–1831 (2008)

    Article  CAS  Google Scholar 

  29. T. Tsuzuki, P.G. McCormick, Scr. Mater. 44, 1731–1734 (2001)

    Article  CAS  Google Scholar 

  30. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Chem. Phys. Lett. 358, 83–86 (2002)

    Article  CAS  Google Scholar 

  31. C.L. Zhang, W.N. Zhou, Y. Hang, Z. Lu, H.D. Hou, Y.B. Zuo, S.J. Qin, F.H. Lu, S.L. Gu, J. Cryst. Growth 310, 1819–1822 (2008)

    Article  CAS  Google Scholar 

  32. S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, K.H. Kim, G.T. Kim, Appl. Phys. Lett. 84, 5022–5024 (2004)

    Article  CAS  Google Scholar 

  33. L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, J. Sol-Gel Sci. Technol. 26 (2003) 261–265.

    Article  CAS  Google Scholar 

  34. B.N. Dole, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Curr. Appl. Phys. 11, 762–766 (2011)

    Article  Google Scholar 

  35. D. Theyvaraju, S. Muthukumaran, Physica E 74, 93–100 (2015)

    Article  CAS  Google Scholar 

  36. T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, L. Wang, M. Tanemura, J.S. Chen, Appl. Phys. Lett. 90, 032509 (2007)

    Article  Google Scholar 

  37. O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, B. Roldan Cuenya, L.K. Ono, H. Heinrich, Appl. Surf. Sci 256, 1895–1907 (2010)

    Article  CAS  Google Scholar 

  38. Z. Quan, D. Li, B. Sebo, W. Liu, S. Guo, S. Xu, H. Huang, G. Fang, M. Li, X. Zhao, Appl. Surf. Sci. 256, 3669–3675 (2010).

    Article  CAS  Google Scholar 

  39. Y. Chen, X.L. Xu, G.H. Zhang, H. Xue, S.Y. Ma, Physica B 404, 3645–3649 (2009)

    Article  CAS  Google Scholar 

  40. A. Azam, A.S. Ahmed, M.S. Ansari, M. Shafeeq, A.H. Naqvi, J. Alloys Compd. 506, 237–242 (2010)

    Article  CAS  Google Scholar 

  41. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, J. Cryst. Growth 292, 19–25 (2006)

    Article  CAS  Google Scholar 

  42. H. Zheng, J.L. Song, Q. Jiang, J.S. Lian, Appl. Surf. Sci. 258, 6735–6738 (2012)

    Article  CAS  Google Scholar 

  43. S. Anandan, S. Muthukumaran, M. Ashokkumar, Superlattices Microstruct. 74, 247–260 (2014)

    Article  CAS  Google Scholar 

  44. S. Suwanboon, T. Ratana, W.T. Ratana, J. Sci. Technol. 4, 111–121 (2007)

    Google Scholar 

  45. T. Takagahara, K. Takeda, Phys. Rev. B 46, 15578 (1992)

    Article  CAS  Google Scholar 

  46. J. Diouri, J.P. Lascaray, M.E. Amrani, Phys. Rev. B 31, 7995 (1985)

    Article  CAS  Google Scholar 

  47. Z. Yang, Z. Ye, Z. Xu, B. Zhao, Physica E 42, 116–119 (2009).

    Article  CAS  Google Scholar 

  48. S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Solid State Sci. 14, 299–304 (2012).

    Article  CAS  Google Scholar 

  49. M. Ashokkumar, S. Muthukumaran, Superlattices Microstruct. 69, 53–64 (2014)

    Article  CAS  Google Scholar 

  50. S. Senthilkumar, K. Rajendran, S. Banerjee, T. K. Chini, V. Sengodan, Mater. Sci. Semicond. Process. 11, 6–12 (2008)

    Article  Google Scholar 

  51. T. Long, S. Yin, K. Takabatake, P. Zhnag, T. Sato, Nanoscale Res. Lett. 4, 247–253 (2009)

    Article  CAS  Google Scholar 

  52. C.L. Yang, J.N. Wang, W.K. Ge, L. Guo, S.H. Yang, D.Z. Shen, J. Appl. Phys. 90, 4489 (2001)

    Article  CAS  Google Scholar 

  53. A.V. Dijken, E.A. Meulenkamp, D. Vanmaelbergh, A. Meijerink, J. Phys. Chem. B 104, 1715–1723 (2000)

    Article  Google Scholar 

  54. W.J. Qin, J. Sun, J. Yang, X.W. Du, Mater. Chem. Phys. 130, 425–430 (2011)

    Article  CAS  Google Scholar 

  55. S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)

    Article  Google Scholar 

  56. A.F. Kohan, G. Ceder, D. Morgan, Phys. Rev. D 61, 15027 (2000)

    Google Scholar 

  57. B. Panigrahy, M. Aslam, D. Bahadur, J. Phys. Chem. C 114, 11758–11763 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theyvaraju, D., Muthukumaran, S. Microstructure, Crystallographic and Photoluminescence Examination of Ni Doped ZnO Nanoparticles Co-doped with Co by Sol–Gel Method. J Inorg Organomet Polym 27, 1572–1582 (2017). https://doi.org/10.1007/s10904-017-0619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0619-4

Keywords

Navigation