Skip to main content
Log in

Synthesis and Antibacterial Performance of Functional Organic–Inorganic Silica Nanocomposites Based on Novel Zwitterionic Polymer

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nano-sized silica particles (SiO2 NPs) of 30 ± 5 nm were modified by the coupling agent of triethoxyvinylsilane and polymer 4-vinyl pyridine (P4VP) was “grafted” onto the surface of modified SiO2 NPs by adopting the “grafting from” way. Then, the P4VP brush of SiO2 NPs was quaternized by ethyl bromoacetate, iodoethane, 3-bromopropionic acid and 1,3-propanesulfonate to obtain four water-insoluble, functional and novel organic–inorganic silica nanocomposites (SiO2/P4VP-eb, SiO2/P4VP-ie, SiO2/P4VP-bpa and SiO2/P4VP-psl), respectively. The antibacterial performance of four functional silica nanocomposites above was investigated by using Escherichia coli ATTC25922 as model bacterium via the colony count method. When the sterilizing ratios of SiO2/P4VP-psl, SiO2/P4VP-bpa, SiO2/P4VP-eb and SiO2/P4VP-ie against E. coli with bacterium age of 4 h (OD600 nm = 2.5) reached 100%, the critical concentration value was 3, 5, 12 and 11 mg/mL, respectively. The results showed that although four functional silica nanocomposites all possessed excellent antibacterial ability, zwitterionic silica nanocomposites (SiO2/P4VP-psl, SiO2/P4VP-bpa) possessed stronger antibacterial ability than cationic silica nanocomposites (SiO2/P4VP-eb, SiO2/P4VP-ie).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Wang, K. Wang, S. Santra, X.J. Zhao, L.R. Hilliard, J.E. Smith, Y.R. Wu, W.H. Tan, Watching silica nanoparticles glow in the biological world. Anal. Chem. 78, 646–654 (2006)

    Article  Google Scholar 

  2. B.J. Gao, S.X. He, J.F. Guo, R.X. Wang, Preparation and antibacterial character of a water-insoluble antibacterial material of grafting polyvinylpyridinium on silica gel. Mater. Lett. 61, 877–883 (2007)

    Article  CAS  Google Scholar 

  3. I. Lynch, K.A. Dawson, Protein-nanoparticle interactions. Nano. Today 3, 40–47 (2008)

    Article  CAS  Google Scholar 

  4. J. Barlett, C. Barbé, L.G. Kong, K. Finnie, H.Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja, Silica particles: a novel drug-delivery system. Adv. Mater. 16, 1959–1966 (2004)

    Article  Google Scholar 

  5. B.J. Gao, Z.B. Wang, Q. Liu, R.K. Du, Immobilization of povidone-iodine on surfaces of silica gel particles and bactericidal property. Colloid. Surface B 79, 446–451 (2010)

    Article  CAS  Google Scholar 

  6. D.S. Jones, J. Djokic, S.P. Gorman, The resistance of polyvinylpyrrolidone-iodine-poly(ε-caprolactone) blends to adherence of Escherichia coli. Biomaterials 26, 2013–2020 (2005)

    Article  CAS  Google Scholar 

  7. Z. Luo, Y. Hu, K.Y. Cai, X.W. Ding, Q. Zhang, M.H. Li, X. Ma, B.L. Zhang, Y.F. Zeng, P.Z. Li, J.H. Li, J.J. Liu, Y.L. Zhao, Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 35, 7951–7962 (2014)

    Article  CAS  Google Scholar 

  8. J. Xie, C.J. Xu, N. Kohler, Y.L. Hou, S.H. Sun, Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv. Mater. 19, 3163–3166 (2007)

    Article  CAS  Google Scholar 

  9. N. Tsubokawa, H. Ishida, Graft polymerization of vinyl momomers by peroxyester groups introduced onto the surface of inorganic ultrafine particles. Polym. J. 24, 809–816 (1992)

    Article  CAS  Google Scholar 

  10. S.Y. Jiang, Z.Q. Cao, Ultralow-fouling, functionalizable, and hydrolysable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010)

    Article  CAS  Google Scholar 

  11. T.A. Horbett, The role of adsorbed proteins in animal cell adhesion. Colloid Surface B 2, 225–240 (1994)

    Article  CAS  Google Scholar 

  12. K. Ishihara, H. Noumra, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi, Why do phospholipid polymers reduce protein adsorption? J. Biomed. Matri. Res. A 39, 323–330 (1998)

    Article  CAS  Google Scholar 

  13. H. Oshida, K. Ishihara, Y. Endo, T. Ueda, A. Watanabe, N. Nakabayashi, Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J. Biomed. Mater. Res. 26, 1543–1552 (1992)

    Article  Google Scholar 

  14. G.W. Jia, Z.Q. Cao, H. Xue, Y.S. Xu, S.Y. Jiang, Novel zwitterionic-polymer-coated silica nanoparticles. Langmuir 25, 3196–3199 (2009)

    Article  CAS  Google Scholar 

  15. P. Mary, D.D. Bendejacq, M.P. Labeau, P. Dupuis, Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J. Phys. Chem. B 111, 7767–7777 (2007)

    Article  CAS  Google Scholar 

  16. S. Colak, G.N. Tew, Dual-functional ROMP-based betaines: effect of hydrophilicity and backbone structure on nonfouling properties. Langmuir 28, 666–675 (2012)

    Article  CAS  Google Scholar 

  17. V.M.M. Soto, J.C. Galin, Poly(sulphopropylbetaines):1. synthesis and characterization. Polymer 25, 121–128 (1984)

    Article  Google Scholar 

  18. R. Hart, D. Timmerman, New polyarnpholytes: the polysulfobetaines. J. Polym. Sci. 28, 638–640 (1958)

    Article  CAS  Google Scholar 

  19. E. Marchal, M. Galin, A. Mathis, B. Meurer, Y.M. Soto, J.C. Galin, Poly(sulphopropylbetaines): 3. bulk properties. Polymer 28, 1937–1944 (1987)

    Article  Google Scholar 

  20. C.M. Xing, J.P. Deng, W.Y. Yang, Synthesis of antibacterial polypropylene film with surface immobilized polyvinylpyrrolidone-iodine complex. J. Appl. Polym. Sci. 97, 2026–2031 (2005)

    Article  CAS  Google Scholar 

  21. M. Stach, T.S. Nunney, Polysulfobetaine films prepared by electrografting technique for reduction of biofouling on electroconductive surface. Appl. Surf. Sci. 257, 10795–10801 (2011)

    Article  CAS  Google Scholar 

  22. G.Q. Zhai, S.C. Toh, W.L. Tan, E.T. Kang, K.G. Neoh, Poly(vinylidene fluoride) with grafted zwitterionic polymer side chains for electrolyte-responsive microfiltration membranes. Langmuir 19, 7030–7037 (2003)

    Article  CAS  Google Scholar 

  23. G.H. Yang, E.T. Kang, K.G. Neoh, Surface graft copolymerization of poly(tetrafluoroethylene) films with N-containing vinyl monomers for the electroless plating of copper. Langmuir 17, 211–218 (2001)

    Article  CAS  Google Scholar 

  24. L.D. Deng, J. Zhang, A.J. Dong, Red electrophoretic particles based on Fe2O3 nanoparticles for electronic inks: design, preparation and properties. Trans. Tianjin Univ. 21, 244–249 (2015)

    Article  CAS  Google Scholar 

  25. Z.Q. Cao, L. Mi, L. Zhang, H. Xue, S.Y. Jiang, J. Mendiola, J.R. Ella-Menye, Reversibly switching the function of a surface between attacking and defending against bacteria. Angew. Chem. 51, 2602–2605 (2012)

    Article  CAS  Google Scholar 

  26. O. Azzaroni, A.A. Brown, N. Cheng, A. Wei, A.M. Jonas, W.T.S. Huck, Synthesis of gold nanoparticles inside polyelectrolyte brushes. J. Mater. Chem. 17, 3433–3439 (2007)

    Article  CAS  Google Scholar 

  27. W.S. Choi, H.Y. Koo, J.Y. Kim, W.T.S. Huck, Collective behavior of magnetic nanoparticles in polyelectrolyte brushes. Adv. Mater. 20, 4504–4508 (2008)

    Article  CAS  Google Scholar 

  28. G. Cheng, H. Xue, Z. Zhang, S.F. Chen, S.Y. Jiang, A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew. Chem. 47, 8831–8834 (2008)

    Article  CAS  Google Scholar 

  29. C.J. Huang, M. Luo, S.Y. Jiang, Interactions of alginate-producing and -deficient pseudomonas aeruginosa with zwitterionic polymers. Biomaterials 33, 3626–3631 (2012)

    Article  CAS  Google Scholar 

  30. B. Gottenbos, H.C. van der Mei, F. Klatter, P. Nieuwenhuis, H.J. Busscher, In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23, 1417–1423 (2002)

    Article  CAS  Google Scholar 

  31. S.B. Lee, R.R. Koepsel, S.W. Morley, K. Matyjaszewski, Y.J. Sun, A.J. Russell, Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5, 877–882 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key Technology Support Program (No. 2015BAD16B05-04), the National Natural Science Foundation of China (No. 21274039), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130074110007) and Natural Science Foundation of Shanghai (No. 2013ZR1412100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhao or Meidong Lang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, C., Xu, H. et al. Synthesis and Antibacterial Performance of Functional Organic–Inorganic Silica Nanocomposites Based on Novel Zwitterionic Polymer. J Inorg Organomet Polym 27, 1351–1364 (2017). https://doi.org/10.1007/s10904-017-0589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0589-6

Keywords

Navigation