Skip to main content
Log in

RETRACTED ARTICLE: Magnetron Sputtered AZO Thin Film Preparation for the Solar Cells Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

This article was retracted on 30 December 2023

This article has been updated

Abstract

Improved properties of aluminum zinc oxide (AZO) thin films deposited by the magnetron sputtering at room temperature are reported. AZO is one of the most promising transparent conducting oxide materials, which widely used in thin film solar cells. In this study the optimization process of the DC magnetron sputtered AZO films was carried out at room temperature by studying its structural, optical, electrical and morphological properties at different deposition times (5, 10, 15, 20 and 25 min). It can be utilized as a front contact for the cadmium telluride (CdTe) based thin film solar cells. The structural study shows that the preferred orientation of grains is along plane (002), with a hexagonal structure of the grains. The electrical and optical characteristics show that the films has an average transmission of 70 % and a resistivity of the order of 10−4 Ω cm. The morphology analysis suggests the formation of packed grains with a homogeneous surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. A.R. Silva, J.O. Rossi, L.P.S. Neto, M. Ueda, Adherence enhancement of metallic film on PZT type ceramic using nitrogen plasma implantation. IEEE Trans. Plasma Sci. 42(10), 3173–3179 (2014)

    Article  Google Scholar 

  2. I.B. Matveev, L.A. Rosocha, Guest editorial: classification of plasma systems for plasma-assisted combustion. IEEE Trans. Plasma Sci. 38(12), 3257–3264 (2010)

    Article  Google Scholar 

  3. P.I. Vysikaylo, V.S. Mitin, A.V. Mitin, N.N. Krasnobaev, V.V. Belyaev, Theoretical model of ceramic heat sinks. IEEE Trans. Plasma Sci. 43(3), 892–895 (2015)

    Article  CAS  Google Scholar 

  4. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)

    Article  CAS  Google Scholar 

  5. I.C. Chen, L.H. Chen, X.R. Ye, C. Daraio, S. Jin, C.A. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102–153104 (2006)

    Article  Google Scholar 

  6. S.S. Wong, A.T. Woolley, E. Joselevich, C.M. Lieber, Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225 (1999)

    Article  CAS  Google Scholar 

  7. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Singleand multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  CAS  Google Scholar 

  8. Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308–3310 (1997)

    Article  CAS  Google Scholar 

  9. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1990)

    Article  Google Scholar 

  10. C.S. Huang, C.Y. Yeh, Y.H. Chang, Y.M. Hsieh, C.Y. Ku, Q.T. Lai, Field emission properties of CNT–ZnO composite materials. Diam. Relat. Mater. 18, 452–456 (2009)

    Article  CAS  Google Scholar 

  11. W.A. de Heer, A. Chatelain, D. Ugarte, A carbon nanotube field emission electron source. Science 270, 1179–1180 (1995)

    Article  Google Scholar 

  12. A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tomanek, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)

    Article  CAS  PubMed  Google Scholar 

  13. N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube. Nature 420, 393–395 (2002)

    Article  PubMed  Google Scholar 

  14. J. Jiao, L.F. Dong, D.W. Tuggle, C.L. Mosher, S. Foxley, J. Tawdekar, Fabrication and characterization of carbon nanotube field emitters. Mater. Res. Soc. Symp. Proc. 706, 113–117 (2002)

    CAS  Google Scholar 

  15. P.I. Vysikaylo, V.S. Mitin, A.V. Mitin, N.N. Krasnobaev, V.V. Belyaev, Plasma metallization coating and its adhesion to microwave transistor substrate Pt.1. methods of experimental research. IEEE Trans. Plasma Sci. 43(4), 1088–1092 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salar Elahi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorannevis, Z., Akbarnejad, E., Salar Elahi, A. et al. RETRACTED ARTICLE: Magnetron Sputtered AZO Thin Film Preparation for the Solar Cells Applications. J Inorg Organomet Polym 25, 1486–1489 (2015). https://doi.org/10.1007/s10904-015-0265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0265-7

Keywords

Navigation