Skip to main content
Log in

Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, the problem of approximating and visualizing the solution set of systems of nonlinear inequalities is considered. It is supposed that left-hand parts of the inequalities can be multiextremal and non-differentiable. Thus, traditional local methods using gradients cannot be applied in these circumstances. Problems of this kind arise in many scientific applications, in particular, in finding working spaces of robots where it is necessary to determine not one but all the solutions of the system of nonlinear inequalities. Global optimization algorithms can be taken as an inspiration for developing methods for solving this problem. In this article, two new methods using two different approximations of Peano–Hilbert space-filling curves actively used in global optimization are proposed. Convergence conditions of the new methods are established. Numerical experiments executed on problems regarding finding the working spaces of several robots show a promising performance of the new algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. Springer, New York (2019)

    Book  Google Scholar 

  2. Barkalov, K., Grishagin, V., Kozinov, E.: An Accelerated Algorithm for Finding Efficient Solutions in Multiobjective Problems with Black-Box Multiextremal criteria. volume 13781 LNCS of Lecture Notes in Computer Science), pp. 51–65 (2022)

  3. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization. Operations Research/Computer Science Interfaces Series, vol. 45. Springer, New York (2009)

  4. Butenko, S., Pardalos, P.M.: Numerical Methods and Optimization: An Introduction. Chapman & Hall/CRC, Abingdon (2014)

    Book  Google Scholar 

  5. Casado, L.G., García, I., Sergeyev, Y.D.: Interval algorithms for finding the minimal root in a set of multiextremal non-differentiable one-dimensional functions. SIAM J. Sci. Comput. 24(2), 359–376 (2002)

    Article  MathSciNet  Google Scholar 

  6. Evtushenko, Yu.G., Posypkin, M., Rybak, L., Turkin, A.: Approximating a solution set of nonlinear inequalities. J. Glob. Optim. 71(1), 129–145 (2018)

    Article  MathSciNet  Google Scholar 

  7. Floudas, C.A., Pardalos, P.M.: State of the Art in Global Optimization. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  8. Garanzha, V.A., Kudryavsteva, L.: Generation of three-dimensional Delaunay meshes from weakly structured and inconsistent data. Comput. Math. Math. Phys. 52(3), 427–447 (2012)

    Article  MathSciNet  Google Scholar 

  9. Gergel, V.P., Grishagin, V.A., Gergel, A.V.: Adaptive nested optimization scheme for multidimensional global search. J. Global Optim. 66(1), 35–51 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gharahsofloo, A., Rahmani, A.: An efficient algorithm for workspace generation of delta robot. Int. J. Robot (Theory Appl.) 5(2), 48–53 (2015)

    Google Scholar 

  11. Gillard, J.W., Kvasov, D.E.: Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Stat. Its Interface 10(1), 59–70 (2016)

    Article  MathSciNet  Google Scholar 

  12. Grishagin, V.A., Israfilov, R.A.: Global search acceleration in the nested optimization scheme. In: AIP Conference Proceedings, volume 1738, pp. 400010:1–4. (2016)

  13. Grishagin, V.A., Israfilov, R.A., Sergeyev, Y.D.: Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes. Appl. Math. Comput. 318, 270–280 (2018)

    MathSciNet  Google Scholar 

  14. Kamenev, G.K.: Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality. Comput. Math. Math. Phys. 54(8), 1201–1213 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kamenev, G.K.: Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls. Comput. Math. Math. Phys. 56(5), 744–755 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kvasov, D.E., Menniti, D., Pinnarelli, A., Sergeyev, Y.D., Sorrentino, N.: Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions. Electr. Power Syst. Res. 78(7), 1217–1229 (2008)

    Article  Google Scholar 

  17. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control problems. Autom. Remote Control 74(9), 1435–1448 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

    Article  Google Scholar 

  19. Lera, D., Posypkin, M., Sergeyev, Y.D.: Space-filling curves for numerical approximation and visualization of solutions to systems of nonlinear inequalities with applications in robotics. Appl. Math. Comput. 390(125660) (2021)

  20. Lera, D., Sergeyev, Y.D.: Global minimization algorithms for Hölder functions. BIT Numer. Math. 42(1), 119–133 (2002)

    Article  Google Scholar 

  21. Liu, X.-J., Wang, J., Pritschow, G.: On the optimal kinematic design of the PRRRP 2-DoF parallel mechanism. Mech. Mach. Theory 41(9), 1111–1130 (2006)

    Article  Google Scholar 

  22. Lotov, A.V., Pospelov, A.I.: The modified method of refined bounds for polyhedral approximation of convex polytopes. Comput. Math. Math. Phys. 48(6), 933–941 (2008)

    Article  MathSciNet  Google Scholar 

  23. Malyshev, D., Posypkin, M., Rybak, L., Usov, A.: Approaches to the determination of the working area of parallel robots and the analysis of their geometric characteristics. Eng. Trans. 67(3), 333–345 (2019)

    Google Scholar 

  24. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased BIRECT algorithm with local accelerators for expensive global optimization. Expert Syst. Appl. 144, 113052 (2020)

    Article  Google Scholar 

  25. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014)

    Book  Google Scholar 

  26. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  27. Sergeyev, Y.D.: On convergence of“Divide the Best’’global optimization algorithms. Optimization 44(3), 303–325 (1998)

    Article  MathSciNet  Google Scholar 

  28. Sergeyev, Y.D., Candelieri, A., Kvasov, D.E., Perego, R.: Safe global optimization of expensive noisy black-box functions in the \(\delta \)-Lipschitz framework. Soft Comput. 24(23), 17715–17735 (2020)

    Article  Google Scholar 

  29. Sergeyev, Y.D., Daponte, P., Grimaldi, D., Molinaro, A.: Two methods for solving optimization problems arising in electronic measurements and electrical engineering. SIAM J. Optim. 10(1), 1–21 (1999)

    Article  MathSciNet  Google Scholar 

  30. Sergeyev, Y.D., Nasso, M.C., Lera, D.: Numerical methods using two different approximations of space-filling curves for black-box global optimization. J. Glob. Optim. (2023). https://doi.org/10.1007/s10898-022-01216-1

    Article  Google Scholar 

  31. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)

    Book  Google Scholar 

  32. Sergeyev, Ya.. D., Kvasov, D.E.: Deterministic Global Optimization: An introduction to the Diagonal Approach. Springer, New York (2017)

    Book  Google Scholar 

  33. Stripinis, L., Paulavičius, R., Žilinskas, J.: Penalty functions and two-step selection procedure based direct-type algorithm for constrained global optimization. Struct. Multidisc. Optim. 59, 2155–2175 (2019)

    Article  MathSciNet  Google Scholar 

  34. Strongin, R.G., Gergel, V.P., Grishagin, V.A., Barkalov, K.A.: Parallel Computing for Global Optimization Problems. Moscow University Press, Moscow (2013). ((In Russian))

    Google Scholar 

  35. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  36. Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression. J. Glob. Optim. 56, 265–277 (2013)

    Article  MathSciNet  Google Scholar 

  37. Zhigljavsky, A., Žilinskas, A.: Bayesian and High-Dimensional Global Optimization. Springer, New York (2021)

    Book  Google Scholar 

  38. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav D. Sergeyev.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest and no funding has been used to execute this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lera, D., Nasso, M.C., Posypkin, M. et al. Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots. J Glob Optim (2024). https://doi.org/10.1007/s10898-023-01352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10898-023-01352-2

Keywords

Navigation