Skip to main content
Log in

Small polygons with large area

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A polygon is small if it has unit diameter. The maximal area of a small polygon with a fixed number of sides n is not known when n is even and \(n\ge 14\). We determine an improved lower bound for the maximal area of a small n-gon for this case. The improvement affects the \(1/n^3\) term of an asymptotic expansion; prior advances affected less significant terms. This bound cannot be improved by more than \(O(1/n^3)\). For \(n=6\), 8, 10, and 12, the polygon we construct has maximal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Audet, C., Hansen, P., Messine, F., Xiong, J.: The largest small octagon. J. Combin. Theory Ser. A 98(1), 46–59 (2002). https://doi.org/10.1006/jcta.2001.3225

    Article  MathSciNet  Google Scholar 

  2. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons. J. Glob. Optim. 38(2), 163–179 (2007). https://doi.org/10.1007/s10898-006-9065-5

    Article  MathSciNet  Google Scholar 

  3. Audet, C., Hansen, P., Messine, F.: The small octagon with longest perimeter. J. Combin. Theory Ser. A 114(1), 135–150 (2007). https://doi.org/10.1016/j.jcta.2006.04.002

    Article  MathSciNet  Google Scholar 

  4. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons–an update. Lectures on Global Optimization, Fields Inst. Comm. Amer. Math. Soc. 55, 1–16 (2009). https://doi.org/10.1090/fic/055/01

  5. Audet, C., Hansen, P., Svrtan, D.: Using symbolic calculations to determine largest small polygons. J. Glob. Optim. 81(1), 261–268 (2021). https://doi.org/10.1007/s10898-020-00908-w

    Article  MathSciNet  Google Scholar 

  6. Bieri, H.: Ungelöste probleme: Zweiter nachtrag zu nr. 12. Elem. Math. 16, 105–106 (1961)

    Google Scholar 

  7. Bingane, C.: OPTIGON: extremal small polygons (2022), https://github.com/cbingane/ optigon

  8. Bingane, C.: Tight bounds on the maximal perimeter and the maximal width of convex small polygons. J. Glob. Optim. 84(4), 1033–1051 (2022). https://doi.org/10.1007/s10898-022-01181-9

    Article  MathSciNet  Google Scholar 

  9. Bingane, C.: Largest small polygons: a sequential convex optimization approach. Optim. Lett. 17(2), 385–397 (2023). https://doi.org/10.1007/s11590-022-01887-5

    Article  MathSciNet  Google Scholar 

  10. Bingane, C.: Tight bounds on the maximal area of small polygons: improved Mossinghoff polygons. Discret. Comput. Geom. 70(1), 236–248 (2023). https://doi.org/10.1007/s00454-022-00374-z

    Article  MathSciNet  Google Scholar 

  11. Foster, J., Szabo, T.: Diameter graphs of polygons and the proof of a conjecture of Graham. J. Combin. Theory Ser. A 114(8), 1515–1525 (2007). https://doi.org/10.1016/j.jcta.2007.02.006

    Article  MathSciNet  Google Scholar 

  12. Graham, R.L.: The largest small hexagon. J. Combin. Theory Ser. A 18, 165–170 (1975). https://doi.org/10.1016/0097-3165(75)90004-7

    Article  MathSciNet  Google Scholar 

  13. Henrion, D., Messine, F.: Finding largest small polygons with GloptiPoly. J. Glob. Optim. 56(3), 1017–1028 (2013). https://doi.org/10.1007/s10898-011-9818-7

    Article  MathSciNet  Google Scholar 

  14. Mossinghoff, M.J.: Isodiametric problems for polygons. Discret. Comput. Geom. 36(2), 363–379 (2006). https://doi.org/10.1007/s00454-006-1238-y

    Article  MathSciNet  Google Scholar 

  15. Pintér, J.D.: Largest small \(n\)-polygons: numerical optimum estimates for \(n \ge 6\). Num. Anal. Optim. 354, 231–247 (2020). https://doi.org/10.1007/978-3-030-72040-711

    Article  MathSciNet  Google Scholar 

  16. Pintér, J.D., Kampas, F.J., Castillo, I.: Finding the sequence of largest small \(n\)-polygons by numerical optimization. Math. Comput. Appl. 27(3), 10 (2022). https://doi.org/10.3390/mca27030042

    Article  Google Scholar 

  17. Reinhardt, K.: Extremale Polygone gegebenen Durchmessers. Jahresber. Deutsch. Math. Verein. 31, 251–270 (1922)

    Google Scholar 

  18. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. 106, 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  Google Scholar 

  19. Yuan, B.: The Largest Small Hexagon. National University of Singapore (2004)

Download references

Acknowledgements

We thank the referees for their helpful comments, which substantially improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Mossinghoff.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingane, C., Mossinghoff, M.J. Small polygons with large area. J Glob Optim 88, 1035–1050 (2024). https://doi.org/10.1007/s10898-023-01329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-023-01329-1

Keywords

Mathematics Subject Classification

Navigation