Skip to main content
Log in

A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, a proximal bundle method is proposed for a class of nonconvex nonsmooth composite optimization problems. The composite problem considered here is the sum of two functions: one is convex and the other is nonconvex. Local convexification strategy is adopted for the nonconvex function and the corresponding convexification parameter varies along iterations. Then the sum of the convex function and the extended function is dynamically constructed to approximate the primal problem. To choose a suitable cutting plane model for the approximation function, here we consider the sum of two cutting planes, which are designed respectively for the convex function and the extended function. By choosing appropriate descent condition, our method can keep track of the relationship between primal problem and approximate models. Under mild conditions, the convergence is proved and the accumulation point of iterations is a stationary point of the primal problem. Two polynomial problems and twelve DC (difference of convex) problems are referred in numerical experiments. The preliminary numerical results show that the proposed method is effective for solving these testing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in this study are available upon reasonable request.

References

  1. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  2. Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey (1970)

    Book  MATH  Google Scholar 

  4. Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141, 349–382 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jonathan, E., Dimitri, P. Bertsekas.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Tseng, P.: Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming. Math. Program. 48(1–3), 249–263 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2(3–4), 203–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, D., Pang, L.P., Chen, S.: A proximal alternating linearization method for nonconvex optimization problems. Optim. Methods Softw. 29(4), 771–785 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kiwiel, K.C.: An alternating linearization bundle method for convex optimization and nonlinear multicommodity flow problems. Math. Program. 130(1), 59–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tang, C., Lv, J., Jian, J.: An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems. J. Inequal. Appl. 2018, 101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clason, C., Valkonen, T.: Primal-dual extragradient methods for nonlinear nonsmooth PDE constrained optimization. SIAM J. Optim. 27(3), 1314–1339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Emiel, G., Sagastizábal, C.: Incremental-like bundle methods with application to energy planning. Comput. Optim. Appl. 46(2), 305–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cruz, J.Y.B.: On proximal subgradient splitting method for minimizing the sum of two nonsmooth convex functions. Set-Valued Var. Anal. 25(2), 245–263 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Suzuki, T.: Dual averaging and proximal gradient descent for online alternating direction multiplier method. In: International Conference on Machine Learning, pp. 392–400 (2013)

  15. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 1(1), 93–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  18. Tuy, H., Tam, B.T., Dan, N.D.: Minimizing the sum of a convex function and a specially structured nonconvex function. Optimization 28(3–4), 237–248 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. 116(1–2), 221–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Optim. 16(4), 1007–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hare, W.L., Poliquin, R.A.: Prox-regularity and stability of the proximal mapping. J. Convex Anal. 14(3), 589–606 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Sagastizábal, C.: Composite proximal bundle method. Math. Program. 140(1), 189–233 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Science and Business Media, Berlin (2013)

    MATH  Google Scholar 

  24. Sagastizábal, C., Hare, W.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20(5), 2442–2473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiwiel, K.C.: Restricted step and Levenberg-Marquardt techniques in proximal bundle methods for nonconvex nondifferentiable optimization. SIAM J. Optim. 6(1), 227–249 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Haarala, N., Miettinen, K., Mäkelä, M.M.: Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109(1), 181–205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83(1–3), 373–391 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fuduli, A., Gaudioso, M., Giallombardo, G.: A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization. Optim. Methods Softw. 19(1), 89–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14(3), 743–756 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fuduli, A., Gaudioso, M., Nurminski, E.A.: A splitting bundle approach for non-smooth non-convex minimization. Optimization 64(5), 1131–1151 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kiwiel, K.C.: A method of centers with approximate subgradient linearizations for nonsmooth convex optimization. SIAM J. Optim. 18(4), 1467–1489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization: Theoretical and Practical Aspects. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  34. Ferrier, C.: Computation of the distance to semi-algebraic sets. Esaim Control Optim. Calc. Var. 5(5), 139–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lv, J., Pang, L.P., Meng, F.Y.: A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information. J. Global Optim. 70, 517–549 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. J. Global Optim. 68(3), 501–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bagirov, A.M.: A method for minimization of quasidifferentiable functions. Optim. Methods Softw. 17(1), 31–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bagirov, A.M., Ugon, J.: Codifferential method for minimizing nonsmooth DC functions. J. Global Optim. 50(1), 3–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mäkelä, M. M.: Multiobjective proximal bundle method for nonconvex nonsmooth optimization: Fortran subroutine MPBNGC 2.0. Rep. Dep. Math. Inf. Technol. Ser. B Sci. Comput. B 13, 203 (2003)

  40. Le, T.H.A., Dinh, T.P., Van Ngai, H.: Exact penalty and error bounds in DC programming. J. Glob. Optim. 52(3), 509–535 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tao, P.D.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1–4), 23–46 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Science Foundation of Zhejiang Sci-Tech Uni-versity (ZSTU) under Grant No. 21062347-Y and also supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ23A010020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, L., Wang, X. & Meng, F. A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems. J Glob Optim 86, 589–620 (2023). https://doi.org/10.1007/s10898-023-01279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-023-01279-8

Keywords

Mathematics Subject Classification

Navigation