Skip to main content
Log in

Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this article we present a general theory of augmented Lagrangian functions for cone constrained optimization problems that allows one to study almost all known augmented Lagrangians for these problems within a unified framework. We develop a new general method for proving the existence of global saddle points of augmented Lagrangian functions, called the localization principle. The localization principle unifies, generalizes and sharpens most of the known results on the existence of global saddle points, and, in essence, reduces the problem of the existence of global saddle points to a local analysis of optimality conditions. With the use of the localization principle we obtain first necessary and sufficient conditions for the existence of a global saddle point of an augmented Lagrangian for cone constrained minimax problems via both second and first order optimality conditions. In the second part of the paper, we present a general approach to the construction of globally exact augmented Lagrangian functions. The general approach developed in this paper allowed us not only to sharpen most of the existing results on globally exact augmented Lagrangians, but also to construct first globally exact augmented Lagrangian functions for equality constrained optimization problems, for nonlinear second order cone programs and for nonlinear semidefinite programs. These globally exact augmented Lagrangians can be utilized in order to design new superlinearly (or even quadratically) convergent optimization methods for cone constrained optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubinov, A.M., Yang, X.Q.: Lagrange-Type Functions in Constrained Non-convex Optimization. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  2. Wang, C.Y., Yang, X.Q., Yang, X.M.: Unified nonlinear Lagrangian approach to duality and optimal paths. J. Optim. Theory Appl. 135, 85–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Giannessi, F.: On the theory of Lagrangian duality. Optim. Lett. 1, 9–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, J., Feng, S.Q., Zhang, Z.: A unified approach for constrained extremum problems: image space analysis. J. Optim. Theory Appl. 159, 69–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part I: image space analysis. J. Optim. Theory Appl. 161, 738–762 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part II: special duality schemes. J. Optim. Theory Appl. 161, 763–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burachik, R.S., Iusem, A.N., Melo, J.G.: Duality and exact penalization for general augmented Lagrangians. J. Optim. Theory Appl. 147, 125–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, C.Y., Yang, X.Q., Yang, X.M.: Nonlinear augmented Lagrangian and duality theory. Math. Oper. Res. 38, 740–760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, C., Liu, Q., Qu, B.: Global saddle points of nonlinear augmented Lagrangian functions. J. Glob. Optim. 68, 125–146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  11. Wang, C.Y., Li, D.: Unified theory of augmented Lagrangian methods for constrained global optimization. J. Glob. Optim. 44, 433–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Q., Yang, X.: Zero duality and saddle points of a class of augmented Lagrangian functions in constrained non-convex optimization. Optimization 57, 655–667 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268–285 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35, 183–238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Birgin, E.G., Martinez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM, Philadelphia (2014)

    Book  MATH  Google Scholar 

  16. Kiwiel, K.C.: On the twice differentiable cubic augmented Lagrangian. J. Optim. Theory Appl. 88, 233–236 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mangasarian, O.L.: Unconstrained Lagrangians in nonlinear programming. SIAM J. Control 12, 772–791 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, H.X., Luo, H.Z.: Saddle points of general augmented Lagrangians for constrained nonconvex optimization. J. Glob. Optim. 53, 683–697 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  20. Tseng, P., Bertsekas, D.P.: On the convergence of the exponential multiplier method for convex programming. Math. Program. 60, 1–19 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, X.L., Li, D., McKinnon, K.I.M.: On saddle points of augmented Lagrangians for constrained nonconvex optimization. SIAM J. Optim. 15, 1128–1146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Polyak, R.A.: Log-Sigmoid multipliers method in constrained optimization. Ann. Oper. Res. 101, 427–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Polyak, R.A.: Nonlinear rescaling vs. smoothing technique in convex optimization. Math. Program. 92, 197–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Polyak, R.: Modified barrier functions: theory and methods. Math. Program. 54, 177–222 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Sun, X.L.: Convexification and existence of saddle point in a pth-power reformulation for nonconvex constrained optimization. Nonlinear Anal. 47, 5611–5622 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, D.: Zero duality gap for a class of nonconvex optimization problems. J. Optim. Theory Appl. 85, 309–324 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, D.: Saddle-point generation in nonlinear nonconvex optimization. Nonlinear Anal. 30, 4339–4344 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, Z.K.: Local saddle points and convexification for nonconvex optimization problems. J. Optim. Theory Appl. 94, 739–746 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, D., Sun, X.L.: Existence of a saddle point in nonconvex constrained optimization. J. Glob. Optim. 21, 39–50 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, H.X., Luo, H.Z.: A note on the existence of saddle points of p-th power Lagrangian for constrained nonconvex optimization. Optimization 61, 1231–1245 (2012)

    MathSciNet  Google Scholar 

  31. He, S., Wu, L., Meng, H.: A nonlinear Lagrangian for constrained optimization problems. J. Appl. Math. Comput. 38, 669–685 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Y.J., Zhang, L.W.: Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone optimization problems. Nonlinear Anal. Theory Methods Appl. 67, 1359–1373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, Y.J., Zhang, L.W.: Convergence of the augmented Lagrangian method for nonlinear optimization problems over second-order cones. J. Optim. Theory Appl. 139, 557–575 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, J., Chen, J.S.: On the existence of saddle points for nonlinear second-order cone programming problems. J. Glob. Optim. 62, 459–480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, J., Zhang, L.W., Wu, Y.: Properties of the augmented Lagrangian in nonlinear semidefinite optimization. J. Optim. Theory Appl. 129, 437–456 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, D., Sun, J., Zhang, L.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114, 349–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhao, X.Y., Sun, D., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2, 203–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, J.: On methods for solving nonlinear semidefinite optimization problems. Numer. Algebra Control Optim. 1, 1–14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Luo, H.Z., Wu, H.X., Chen, G.T.: On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming. J. Glob. Optim. 54, 599–618 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, H., Luo, H., Ding, X., Chen, G.: Global convergence of modified augmented Lagrangian methods for nonlinear semidefintie programming. Comput. Optim. Appl. 56, 531–558 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, H.X., Luo, H.Z., Yang, J.F.: Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming. J. Glob. Optim. 59, 695–727 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yamashita, H., Yabe, H.: A survey of numerical methods for nonlinear semidefinite programming. J. Oper. Res. Soc. Jpn. 58, 24–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rückmann, J.-J., Shapiro, A.: Augmented Lagrangians in semi-infinite programming. Math. Program. Ser. B. 116, 499–512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Huy, N.Q., Kim, D.S.: Stability and augmented Lagrangian duality in nonconvex semi-infinite programming. Nonlinear Anal. 75, 163–176 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Son, T.Q., Kim, D.S., Tam, N.N.: Weak stability and strong duality of a class of nonconvex infinite programs via augmented Lagrangian. J. Glob. Optim. 53, 165–184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Burachik, R.S., Yang, X.Q., Zhou, Y.Y.: Existence of augmented Lagrange multipliers for semi-infinite programming problems. J. Optim. Theory Appl. 173, 471–503 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, L., Gu, J., Xiao, X.: A class of nonlinear Lagrangians for nonconvex second order cone programming. Comput. Optim. Appl. 49, 61–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stingl, M.: On the solution of nonlinear semidefinite programs by augmented Lagrangian methods. Ph.D. thesis, Institute of Applied Mathematics II, Friedrech-Alexander University of Erlangen-Nuremberg, Erlangen, Germany (2006)

  50. Noll, D.: Local convergence of an augmented Lagrangian method for matrix inequality constrained programming. Optim. Methods Softw. 22, 777–802 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, Y., Zhang, L.: A new nonlinear Lagrangian method for nonconvex semidefinite programming. J. Appl. Anal. 15, 149–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, L., Li, Y., Wu, J.: Nonlinear rescaling Lagrangians for nonconvex semidefinite programming. Optim. 63, 899–920 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Luo, H., Wu, H., Liu, J.: On saddle points in semidefinite optimization via separation scheme. J. Optim. Theory Appl. 165, 113–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shapiro, A., Sun, J.: Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29, 479–491 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhou, Y.Y., Zhou, J.C., Yang, X.Q.: Existence of augmented Lagrange multipliers for cone constrained optimization problems. J. Glob. Optim. 58, 243–260 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Liu, Q., Tang, W.M., Yang, X.M.: Properties of saddle points for generalized augmented Lagrangian. Math. Meth. Oper. Res. 69, 111–124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, C., Zhou, J., Xu, X.: Saddle points theory of two classes of augmented Lagrangians and its applications to generalized semi-infinite programming. Appl. Math. Optim. 59, 413–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Luo, H.Z., Mastroeni, G., Wu, H.X.: Separation approach for augmented Lagrangians in constrained nonconvex optimization. J. Optim. Theory Appl. 144, 275–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhou, J., Xiu, N., Wang, C.: Saddle point and exact penalty representation for generalized proximal Lagrangians. J. Glob. Optim. 56, 669–687 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Dolgopolik, M.V.: A unifying theory of exactness of linear penalty functions. Optimization 65, 1167–1202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Dolgopolik, M.V.: A unifying theory of exactness of linear penalty functions II: parametric penalty functions. Optimization 66, 1577–1622 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Dolgopolik, M.V.: Existence of augmented Lagrange multipliers: reduction to exact penalty functions and localization principle. Math. Program. 166, 297–326 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Malozemov, V.N., Pevnyi, A.B.: Alternation properties of solutions of nonlinear minimax problems. Soviet Math. Dokl. 14(5), 1303–1306 (1973)

    MATH  Google Scholar 

  64. Daugavet, V.A., Malozemov, V.N.: Alternance properties of solutions of nonlinear minimax problems with nonconvex constraints. Soviet Math. Dokl. 16(6), 1474–1476 (1975)

    MATH  Google Scholar 

  65. Daugavet, V.A.: Alternance properties of the solutions of non-linear minimax problems with non-linear constraints. USSR Comput. Math. Math. Phys. 16(3), 236–241 (1976)

    Article  MATH  Google Scholar 

  66. Daugavet, V.A., Malozemov, V.N.: Quadratic rate of convergence of a linearization method for solving discrete minimax problems. USSR Comput. Math. Math. Phys. 21(4), 19–28 (1981)

    Article  MATH  Google Scholar 

  67. Demyanov, V.F., Malozemov, V.N.: Optimality conditions in terms of alternance: two approaches. J. Optim. Theory Appl. 162, 805–820 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Demyanov, V.F., Malozemov, V.N.: Alternance form of optimality conditions in the finite-dimensional space. In: Demyanov, V.F., Pardalos, P.M., Batsyn, M. (eds.) Constructive Nonsmooth Analysis and Related Topics, pp. 185–205. Springer, New York (2014)

    Chapter  Google Scholar 

  69. Di Pillo, G., Grippo, L.: A new class of augmented Lagrangians in nonlinear programming. SIAM J. Control Optim. 17, 618–628 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  70. Di Pillo, G., Grippo, L., Lampariello, F.: A method for solving equality constrained optimization problems by unconstrained minimization. In: Iracki, K., Malanowski, K., Walukiewicz, S. (eds.) Optimization techniques: proceedings of the 9th IFIP Conference on Optimization Techniques, pp. 96–105. Springer-Verlag, Berlin, Heidelberg (1980)

  71. Di Pillo, G., Grippo, L.: A new augmented Lagrangian function for inequality constraints in nonlinear programming problems. J. Optim. Theory Appl. 36, 495–519 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  72. Lucidi, S.: New results on a class of exact augmented Lagrangians. J. Optim. Theory Appl. 58, 259–282 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  73. Di Pillo, G., Lucidi, S.: On exact augmented Lagrangian functions in nonlinear programming. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications, pp. 85–100. Plenum Press, New York (1996)

    Chapter  Google Scholar 

  74. Di Pillo, G., Lucidi, S.: An augmented Lagrangian function with improved exactness properties. SIAM J. Optim. 12, 376–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  75. Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L.: Fruitful uses of smooth exact merit functions in constrained optimization. In: Di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp. 201–225. Kluwer Academic Publishers, Dordrecht (2003)

    Chapter  Google Scholar 

  76. Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L.: An exact augmented Lagrangian function for nonlinear programming with two-sided constraints. Comput. Optim. Appl. 25, 57–83 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  77. Du, X., Zhang, L., Gao, Y.: A class of augmented Lagrangians for equality constraints in nonlinear programming problems. Appl. Math. Comput. 172, 644–663 (2006)

    MathSciNet  MATH  Google Scholar 

  78. Du, X., Liang, Y., Zhang, L.: Further study on a class of augmented Lagrangians of Di Pillo and Grippo in nonlinear programming. J. Shanghai Univ. 10, 293–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  79. Luo, H., Wu, H., Liu, J.: Some results on augmented Lagrangians in constrained global optimization via image space analysis. J. Optim. Theory Appl. 159, 360–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  80. Di Pillo, G., Lucidi, S., Palagi, L.: An exact penalty-Lagrangian approach for a class of constrained optimization problems with bounded variables. Optimization 28, 129–148 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  81. Di Pillo, G., Girppo, L., Lucidi, S.: A smooth method for the finite minimax problem. Math. Program. 60, 187–214 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  82. Di Pillo, G., Lucidi, S., Palagi, L.: A truncated Newton method for constrained optimization. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics, pp. 79–103. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  83. Di Pillo, G., Lucidi, S., Palagi, L.: Convergence to second-order stationary points of a primal-dual algorithm model for nonlinear programming. Math. Oper. Res. 30, 897–915 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  84. Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L.: A truncated Newton method in an augmented Lagrangian framework for nonlinear programming. Comput. Optim. Appl. 45, 311–352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  85. Di Pillo, G., Luizzi, G., Lucidi, S.: An exact penalty-Lagrangian approach for large-scale nonlinear programming. Optimization 60, 223–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  86. Fukuda, E.H., Lourenco, B.F.: Exact augmented Lagrangian functions for nonlinear semidefinite programming. arXiv: 1705.06551 (2017)

  87. Huang, X.X., Yang, X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  88. Huang, X.X., Yang, X.Q.: Further study on augmented Lagrangian duality theory. J. Glob. Optim. 31, 193–210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  89. Chen, J.-X., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-order cones. Math. Program. Ser. B. 101, 95–117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  90. Sun, D., Sun, J.: Löwner’s operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res. 33, 421–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  91. Shapiro, A.: On differentiability of symmetric matrix valued functions. Technical report. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA (2002)

  92. Chen, X., Qi, H., Tseng, P.: Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems. SIAM J. Optim. 13, 960–985 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  93. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  94. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Science+Business Media, New York (2000)

    Book  MATH  Google Scholar 

  95. Zhao, W., Zhang, J., Zhou, J.: Existence of local saddle points for a new augmented Lagrangian function. Math. Probl. Eng. 2010, 1–13 (2010)

    MathSciNet  Google Scholar 

  96. Polak, E., Royset, J.O.: On the use of augmented Lagrangians in the solution of generalized semi-infinite min-max problems. Comput. Optim. Appl. 31, 173–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  97. Dolgopolik, M.V.: A unified approach to the global exactness of penalty and augmented Lagrangian functions II: extended exactness. arXiv: 1710.01961 (2017)

  98. Fukuda, E.H., Silva, P.J.S., Fukushima, M.: Differentiable exact penalty functions for nonlinear second-order cone programs. SIAM J. Optim. 22, 1607–1633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  99. Bonnans, J.F., Ramírez, C.H.: Perturbation analysis of second-order cone programming problems. Math. Program. 104, 205–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  100. Pedregal, P.: Direct numerical algorithm for constrained variational problems. Numer. Funct. Anal. Optim. 38, 486–506 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dolgopolik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopolik, M.V. Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property. J Glob Optim 71, 237–296 (2018). https://doi.org/10.1007/s10898-017-0603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0603-0

Keywords

Mathematics Subject Classification

Navigation