Skip to main content
Log in

Complementarity problems with respect to Loewnerian cones

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This work deals with the analysis and numerical resolution of a broad class of complementarity problems on spaces of symmetric matrices. The complementarity conditions are expressed in terms of the Loewner ordering or, more generally, with respect to a dual pair of Loewnerian cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Homidan, S., Wolkowicz, H.: Approximate and exact completion problems for Euclidean distance matrices using semidefinite programming. Linear Algebra Appl. 406, 109–141 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adly, S., Seeger, A.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. 49, 299–318 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Azé, D., Hiriart-Urruty, J.-B.: Optimal Hoffman-type estimates in eigenvalue and semidefinite inequality constraints. J. Glob. Optim. 24, 133–147 (2002)

    Article  MATH  Google Scholar 

  4. Barker, G.P., Carlson, D.: Cones of diagonally dominant matrices. Pac. J. Math. 57, 15–32 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barvinok, A.: A Course in Convexity. American Mathematical Society, Providence (2002)

    Book  MATH  Google Scholar 

  6. Borsdorf, R., Higham, N.J.: A preconditioned Newton algorithm for the nearest correlation matrix. IMA J. Numer. Anal. 30, 94–107 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, X., Tseng, P.: Non-interior continuation methods for solving semidefinite complementarity problems. Math. Program. Ser. A 95, 431–474 (2003)

  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  9. Gajardo, P., Seeger, A.: Reconstructing a matrix from a partial sampling of Pareto eigenvalues. Comput. Optim. Appl. 51, 1119–1135 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gajardo, P., Seeger, A.: Solving inverse cone-constrained eigenvalue problems. Numerische Math. 123, 309–331 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Glunt, W., Hayden, T.L., Hong, S., Wells, J.: An alternating projection algorithm for computing the nearest Euclidean distance matrix. SIAM J. Matrix Anal. Appl. 11, 589–600 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hiriart-Urruty, J.B., Malick, J.: A fresh variational-analysis look at the positive semidefinite matrices world. J. Optim. Theory Appl. 153, 551–577 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Isac, G., Bulavsky, V.A., Kalashnikov, V.V.: Complementarity, Equilibrium, Efficiency and Economics. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  14. Kim, N.T.B., Luc, D.T.: Normal cones to a polyhedral convex set and generating efficient faces in linear multiobjective programming. Acta Math. Vietnam. 25, 101–124 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  16. Lewis, A.S.: Eigenvalue-constrained faces. Linear Algebra Appl. 269, 159–181 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, Q., Li, D., Qi, H.: Newton’s method for computing the nearest correlation matrix with a simple upper bound. J. Optim. Theory Appl. 147, 546–568 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, Y.J., Zhang, L.W., Wang, Y.H.: Some properties of a class of merit functions for symmetric cone complementarity problems. Asia-Pac. J. Oper. Res. 23, 473–495 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Malick, J., Sendov, H.: Clarke generalized Jacobian of the projection onto the cone of positive semidefinite matrices. Set-Valued Anal. 14, 273–293 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nishimura, R., Hayashi, S., Fukushima, M.: Semidefinite complementarity reformulation for robust Nash equilibrium problems with Euclidean uncertainty sets. J. Glob. Optim. 53, 107–120 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York (1993)

    MATH  Google Scholar 

  22. Qi, H.D.: A semismooth Newton method for the nearest Euclidean distance matrix problem. SIAM J. Matrix Anal. Appl. 34, 67–93 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. Ser. A 58, 353–367 (1993)

  24. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stern, R.J., Wolkowicz, H.: Invariant ellipsoidal cones. Linear Algebra Appl. 150, 81–106 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sun, D., Sun, J.: Semismooth matrix-valued functions. Math. Oper. Res. 27, 150–169 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sun, D., Sun, J.: Strong semismoothness of the Fischer–Burmeister SDC and SOC complementarity functions. Math. Program. Ser. A 103, 575–581 (2005)

  28. Zhang, L., Zhang, N., Pang, L.: Differential properties of the symmetric matrix-valued Fischer–Burmeister function. J. Optim. Theory Appl. 153, 436–460 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhou, Y., Gowda, M.S.: On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 431, 772–782 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Both authors would like to thank the referees for meticulous reading of the manuscript and for several suggestions that improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Seeger.

Additional information

David Sossa is supported by CONICYT (Chile).

Appendix

Appendix

Let \(\sigma (\mathfrak {L}, \mathcal P_n)\) denote the set of Loewner-eigenvalues of a linear map \(\mathfrak {L}:\mathcal S_n\rightarrow \mathcal S_n\). Such set is called the Loewner-spectrum of \(\mathfrak {L}\). The following proposition displays a map \(\mathfrak {L}\) whose Loewner-spectrum is a set of infinite cardinality.

Proposition 5.1

Let \(\mathfrak {L}:\mathcal S_n\rightarrow \mathcal S_n\) be given by \(\mathfrak {L}(X)=\langle C,X\rangle I_n\), where \(C\succeq \mathbf{0}\). Then

$$\begin{aligned} \left[ \lambda _\mathrm{min}(C), \lambda _\mathrm{max}(C)\right] \;\subseteq \; \sigma (\mathfrak {L}, \mathcal P_n)\;=\; \bigcup _{r=1}^n \left[ f_r(C), g_r(C)\right] \,, \end{aligned}$$
(47)

where \(f_r(C)\) and \(g_r(C)\) indicate respectively the sum of the \(r\) smallest and the sum of the \(r\) largest eigenvalues of \(C\).

Proof

Assume that \(C\not =\mathbf{0}\), otherwise (47) holds trivially. A scalar \(\lambda \) belongs to \(\sigma (\mathfrak {L}, \mathcal P_n)\) if and only if there exists \(X\in \mathcal S_n\) such that

$$\begin{aligned} \left\{ \begin{array}{ll} X\succeq \mathbf{0}, \;\mathrm{tr}(X)=1,\\ \langle C,X\rangle I_n\succeq \lambda X,\\ \langle C,X\rangle = \lambda \Vert X\Vert ^2. \end{array} \right. \end{aligned}$$

Hence,

$$\begin{aligned} \sigma (\mathfrak {L}, \mathcal P_n)= \left\{ \Vert X\Vert ^{-2}\langle C,X\rangle : X\in \Omega \right\} , \end{aligned}$$
(48)

where \(\Omega \) stands for the set of matrices \(X\in \mathcal S_n\) satisfying

$$\begin{aligned}&\displaystyle X\succeq \mathbf{0}, \;\mathrm{tr}(X)=1,\end{aligned}$$
(49)
$$\begin{aligned}&\displaystyle \langle C,X\rangle (\Vert X\Vert ^2- \lambda _\mathrm{max} (X))\ge 0. \end{aligned}$$
(50)

Under (49), the inequality (50) can be written as an equality. The set on the right-hand side of (48) remains unchanged if one uses

$$\begin{aligned} \Omega _0:= \left\{ X\in \mathcal S_n: X\succeq \mathbf{0}, \;\mathrm{tr}(X)=1, \; \lambda _\mathrm{max} (X)= \Vert X\Vert ^2 \right\} \end{aligned}$$

instead of \(\Omega \). On the other hand, one can check that

$$\begin{aligned} \Omega _0= \bigcup _{r=1}^n\left\{ r^{-1} QQ^T: Q\in \mathcal O (n,r) \right\} , \end{aligned}$$

where \(Q\in \mathcal O (n,r) \) indicates that \(Q\) is matrix of size \(n\times r\) such that \(Q^TQ=I_r\). Hence,

$$\begin{aligned} \sigma (\mathfrak {L}, \mathcal P_n)= \bigcup _{r=1}^n\left\{ \langle C,QQ^T\rangle : Q\in \mathcal O (n,r) \right\} . \end{aligned}$$

Note that \(\langle C,QQ^T\rangle \) ranges over the interval \(\left[ f_r(C), g_r(C)\right] \) as the variable \(Q\) ranges over \(\mathcal O (n,r)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeger, A., Sossa, D. Complementarity problems with respect to Loewnerian cones. J Glob Optim 62, 299–318 (2015). https://doi.org/10.1007/s10898-014-0230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0230-y

Keywords

Mathematics Subject Classification

Navigation