Skip to main content
Log in

Modulation and Enhancement of Red Luminescence in Ca2GdSbO6: Eu3+ Phosphor by Co-Doping with Bi3+

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The double perovskite structure of Ca2GdSbO6 as a fluorescent phosphor matrix material possesses a stable structure, making it an excellent candidate for a matrix material. In this study, single-doped Ca2GdSbO6: Eu3+ fluorescent phosphors and Bi3+ sensitized Ca2GdSbO6: Eu3+, Bi3+ fluorescent phosphor materials were synthesized using the high-temperature solid-state method. The luminescence of this phosphor is based on the 5D04F2 transition emission of Eu3+ ions, which occurs at 612 nm. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectra, high-temperature fluorescence spectra, and fluorescence decay lifetimes to study the phase structure, optical properties, crystal structure, and chemical purity of the samples. The performance of the single-doped phosphor was significantly improved by the addition of Bi3+ sensitizer. The luminescence intensity increased by nearly 100% compared to Ca2GdSbO6: Eu3+ phosphor, with a quantum efficiency increase of 124%. The thermal quenching activation energy was found to be 0.299 eV, and the luminescence intensity remained at 70.3% of room temperature at 453 K. These results indicate that the co-doping of Bi3+ has a modulation and enhancement effect on the luminescence of Ca2GdSbO6: Eu3+ red phosphor, showing great potential for application in near-ultraviolet-excited white LED devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zhihua S, Wang M, Yang Z et al (2016) Enhanced red emission from Eu3+–Bi3+ co-doped Ca2YSbO6 phosphors for white light-emitting diode. J Alloys Compd 658:453–458. https://doi.org/10.1016/j.jallcom.2015.10.242

    Article  CAS  Google Scholar 

  2. Zhong JS, Gao HB, Yuan YJ et al (2018) Eu3+-doped double perovskite-based phosphor-in-glass color converter for high-power warm w-LEDs. J Alloys Compd 735:2303–2310. https://doi.org/10.1016/j.jallcom.2017.11.242

    Article  CAS  Google Scholar 

  3. Shi L, Han YJ, Zhang ZG, Ji ZX et al (2019) Synthesis and photoluminescence properties of a novel Ca2LaNbO6:Mn4+ double perovskite phosphor for plant growth LEDs. J Mater Sci Mater Electron 30:15504–15511. https://doi.org/10.1007/s10854-019-01927-4

    Article  CAS  Google Scholar 

  4. Mengmeng J, Guo N, Lü W et al (2013) Synthesis, structure and photoluminescence properties of europium-, terbium-, and thulium-doped Ca3Bi(PO4)3 phosphors. Dalton Trans 42:12395. https://doi.org/10.1039/c3dt50552a

    Article  CAS  Google Scholar 

  5. Ma L, Lu F, Yu Q et al (2023) A three-mode optical thermometry based on thermochromic Gd2GaSbO7:Bi3+, Eu3+ phosphors. Ceram Int 49:16681–16689. https://doi.org/10.1016/j.ceramint.2023.02.029

    Article  CAS  Google Scholar 

  6. Shi X, Zhang M, Lu X et al (2023) High sensitivity and multicolor tunable optical thermometry in Bi3+/Eu3+ co-doped Ca2Sb2O7 phosphors. Mater Today Chem 27:101264. https://doi.org/10.1016/j.mtchem.2022.101264

    Article  CAS  Google Scholar 

  7. Yukun Liu Y, Liu H et al (2023) Enhanced luminescence efficiency and thermal stability via introduction of non-rare earth Bi3+ in Gd5Si2BO13:Eu3+. J Rare Earths 41:989–996. https://doi.org/10.1016/j.jre.2022.04.030

    Article  CAS  Google Scholar 

  8. Li L, Chen J, Peng X et al (2023) Energy transfer and luminescent properties of Lu2WO6:Bi3+, Eu3+ red emission phosphor. Ceram Int 49:25806–25814. https://doi.org/10.1016/j.ceramint.2023.05.127

    Article  CAS  Google Scholar 

  9. Liu M, Shen B, Wang K et al (2019) Highly efficient red-emitting Ca2YSbO6:Eu3+ double perovskite phosphors for warm WLEDs. RSC Adv 9:20742–20748. https://doi.org/10.1039/C9RA03410B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li K, Lian H, Van Deun R (2018) A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties. Dalton Trans 47:2501–2505. https://doi.org/10.1039/C7DT04811D

    Article  CAS  PubMed  Google Scholar 

  11. Ray R, Himanshu AK, Sen P et al (2017) Effects of octahedral tilting on the electronic structure and optical properties of d0 double perovskites A2ScSbO6 (A = sr, ca). J Alloys Compd 705:497–506. https://doi.org/10.1016/j.jallcom.2017.02.080

    Article  CAS  Google Scholar 

  12. Jing W (2017) Luminescence and mechanism studies of rare earth Eu ions activated antimonite and silicate phosphors. Master, Soochow University(in Chinese)

    Google Scholar 

  13. Han M, Chen Y, Fu J et al (2023) Photoluminescence and temperature dependent properties of Bi3+, Sm3+ co-doped Ca2YSbO6 phosphor for dual-emitting optical thermometer. Opt Mater 138:113720. https://doi.org/10.1016/j.optmat.2023.113720

    Article  CAS  Google Scholar 

  14. Haoshuang F, Meng X, Xu Y et al (2023) A novel Ca2ScNbO6:Eu3+ phosphor with excellent thermal stability for high color rendering WLED. Opt Mater 140:113871. https://doi.org/10.1016/j.optmat.2023.113871

    Article  CAS  Google Scholar 

  15. Zhang Z, Sun L, Devakumar B et al (2020) Novel highly luminescent double-perovskite Ca2GdSbO6:Eu3+ red phosphors with high color purity for white LEDs: synthesis, crystal structure, and photoluminescence properties. J Lumin 221:117105. https://doi.org/10.1016/j.jlumin.2020.117105

    Article  CAS  Google Scholar 

  16. Wang L, Liu Q, Shen K et al (2017) A high quenching content red-emitting phosphor based on double perovskite host BaLaMgSbO6 for white LEDs. J Alloys Compd 696:443–449. https://doi.org/10.1016/j.jallcom.2016.11.204

    Article  CAS  Google Scholar 

  17. Yuepeng Cui Z, Ye HD et al (2014) Modulation and enhancement of luminescence of BaY2Si3O10: Eu3+ phosphor through energy transfer by Bi3+co-doping. Chin J Quantum Electron 31:641–647. (in Chinese)

    Google Scholar 

  18. Cao R, Chen G, Yu X et al (2014) Luminescence properties of Ca3Ti2O7: Eu3+, Bi3+, R+ (R+ =Li+, Na+, and K+) red emission phosphor. J Solid State Chem 220:97–101. https://doi.org/10.1016/j.jssc.2014.08.015

    Article  CAS  Google Scholar 

  19. Wi SW, Lee YS (2024) Effect of Eu3+, Bi3+, and Li+ doping on luminescent property of GdNbO4. J Rare Earths 42:66–75. https://doi.org/10.1016/j.jre.2022.10.008

    Article  CAS  Google Scholar 

  20. Shen B, Chen B, Zhang Y, Jianxu H (2020) A study of optical properties and site preference of Bi3+/Eu3+ co-doped CaLa4Si3O13 red-emitting phosphors for w-LED applications. J Lumin 218:116821. https://doi.org/10.1016/j.jlumin.2019.116821

    Article  CAS  Google Scholar 

  21. Tai Y, Cui R, Zhang J et al (2023) Luminescence properties and optical sensing behaviors of Sr2GdSbO6:Eu3+ phosphors. J Rare Earths S1002072123001680. https://doi.org/10.1016/j.jre.2023.06.009

    Article  Google Scholar 

  22. Zhang J, Zhang X, Zhang J et al (2017) Near-UV-to-red light conversion through energy transfer in Ca2Sr(PO4)2:Ce3+, Mn2+ for plant growth. J Mater Chem C 5:12069–12076. https://doi.org/10.1039/C7TC04262K

    Article  CAS  Google Scholar 

  23. Zhang Q, Sun H et al (2014) (K0.5Na0.5)NbO3:Eu3+/Bi3+: a novel, highly efficient, red light-emitting material with superior water resistance behavior. RSC Adv 5:4707–4715. https://doi.org/10.1039/C4RA10888D

    Article  CAS  Google Scholar 

  24. Hua Y, Ran W (2021) Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications. Chem Eng J 406:127154. https://doi.org/10.1016/j.cej.2020.127154

    Article  CAS  Google Scholar 

  25. Bin F, Liu J, Zhou W, Han L (2019) Luminescence properties of new red-emitting phosphor Li2Al2Si3O10:Eu3+ for near UV-based white LED. Opt Mater 98:109499. https://doi.org/10.1016/j.optmat.2019.109499

    Article  CAS  Google Scholar 

  26. Xiong FB, Luo JJ, Lin HF et al (2018) Luminescence properties of CaLaB7O13:Eu3+ red-emitting phosphors for near UV-based white LED. Optik 156:31–38. https://doi.org/10.1016/j.ijleo.2017.10.161

    Article  CAS  Google Scholar 

  27. Chen X, Zheng Z, Teng L et al (2018) Self-calibrated optical thermometer based on luminescence from SrLu2O4:Bi 3+, Eu3+ phosphors. RSC Adv 8:35422–35428. https://doi.org/10.1039/C8RA06358C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiaoyong Huang S, Wang J, Liang B (2020) Eu3+-activated Ca2YTaO6 double-perovskite compound: a novel highly efficient red-emitting phosphor for near-UV-excited warm w-LEDs. J Lumin 226:117408. https://doi.org/10.1016/j.jlumin.2020.117408

    Article  CAS  Google Scholar 

  29. Du P, Ran W, Hou Y et al (2019) Eu3+ -Activated NaGdF4 nanorods for Near-Ultraviolet light-triggered indoor illumination. ACS Appl Nano Mater 2:4275–4285. https://doi.org/10.1021/acsanm.9b00743

    Article  CAS  Google Scholar 

  30. Qi S, Sakthivel T, Devakumar B et al (2020) Realizing bright blue-red color-tunable emissions from Gd2GeO5:Bi3+, Eu3+ phosphors through energy transfer toward light-emitting diodes. J Lumin 222:117127. https://doi.org/10.1016/j.jlumin.2020.117127

    Article  CAS  Google Scholar 

  31. Noh JXHM, Choi BC et al (2020) Dual-functional of non-contact thermometry and field emission displays via efficient Bi3+→Eu3+ energy transfer in emitting-color tunable GdNbO4 phosphors. Chem Eng J 382:122861. https://doi.org/10.1016/j.cej.2019.122861

    Article  CAS  Google Scholar 

  32. Annadurai G, Guo LSH, Huang X (2020) Bright tunable white-light emissions from Bi3+/Eu3+ co-doped Ba2Y5B5O17 phosphors via energy transfer for UV-excited white light-emitting diodes. J Lumin 226:117474. https://doi.org/10.1016/j.jlumin.2020.117474

    Article  CAS  Google Scholar 

  33. McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144. https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  34. Peipei Dang D, Liu Y, Wei et al (2020) Highly efficient cyan-green Emission in Self-activated Rb3RV2O8 (R = Y, Lu) Vanadate Phosphors for full-spectrum White Light-Emitting diodes (LEDs). Inorg Chem 59:6026–6038. https://doi.org/10.1021/acs.inorgchem.0c00015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The University Industry-University-Research Joint Innovation Project of Fujian Province (No.2023H6038); The Postgraduate Science and Technology Innovation Programme Projects of Xiamen University of Technology (No.YKJCX2023086).

Author information

Authors and Affiliations

Authors

Contributions

Li.: Conceptualization, Investigation, Experiment, Writing-original draft.Hong.: Investigation, Experiment. Xu.: Methodology, Data curation, Supervision. Liu.: Methodology, Data curation, Supervision. Fan.: Investigation, Experiment.All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yingchao Xu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hong, J., Xu, Y. et al. Modulation and Enhancement of Red Luminescence in Ca2GdSbO6: Eu3+ Phosphor by Co-Doping with Bi3+. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03731-8

Keywords

Navigation