Skip to main content
Log in

Benzazole-Based ESIPT Fluorophores: Proton Transfer from the Chalcogen Perspective. A Combined Theoretical and Experimental Study

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, we present a comprehensive photophysical investigation of ESIPT-reactive benzazole derivatives in both solution and the solid state. These derivatives incorporate different chalcogen atoms (O, S, and Se) into their structures, and we explore how these variations impact their electronic properties in both ground and excited states. Changes in the UV-Vis absorption and fluorescence emission spectra were analyzed and correlated with the chalcogen atom and solvent polarity. In general, the spectral band of the benzazole derivative containing selenium was redshifted in both the ground and excited states compared to that of its oxygen and sulfur counterparts. Furthermore, we observed that the solvent played a distinctive role in influencing the ESIPT process within these compounds, underscoring once again the significant influence of the chalcogen atom on their photophysical behavior. Theoretical calculations provided a deeper understanding of the molecular dynamics, electronic structures, and photophysical properties of these compounds. These calculations highlighted the effect of chalcogen atoms on the molecular geometry, absorption and emission characteristics, and intramolecular hydrogen bonding, revealing intricate details of the ESIPT mechanism. The integration of experimental and computational data offers a detailed view of the structural and electronic factors governing the photophysical behavior of benzazole derivatives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Weller A (1955) Über die fluoreszenz der salizylsäure und verwandter verbindungen. Sci Nat 42:175–176

    Article  CAS  Google Scholar 

  2. Kwon JE, Park SY (2011) Advanced organic optoelectronic materials: Harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23:3615–3642

    Article  CAS  PubMed  Google Scholar 

  3. Joshi HC, Antonov L (2021) Excited-state intramolecular proton transfer: A short introductory review. Molecules 26:1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Dahal D, Abeywickrama CS, Pang Y (2021) Progress in tuning emission of the excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes. ACS Omega 6:6547–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Padalkar VS, Seki S (2016) Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev 45:169–202

    Article  CAS  PubMed  Google Scholar 

  6. Santos FS, Ramasamy E, Ramamurthy V, Rodembusch FS (2016) Excited state behaviour of benzoxazole derivatives in a confined environment afforded by a water soluble octaacid capsule. J Photochem Photobiol A Chem 317:175–185

    Article  CAS  Google Scholar 

  7. Chen CL, Chen YT, Demchenko AP, Chou PT (2018) Amino proton donors in excited-state intramolecular proton-transfer reactions. Nat Rev Chem 2:131–143

    Article  CAS  Google Scholar 

  8. Skilitsi AI, Agathangelou D, Shulov I, Conyard J, Haacke S, Mély Y, Klymchenko A, Léonard J (2018) Ultrafast photophysics of the environment-sensitive 4′-methoxy-3-hydroxyflavone fluorescent dye. Phys Chem Chem Phys 20:7885–7895

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Yang L, Han Y, Wang Z, Li H, Sun S, Xu Y (2022) A pH-sensitive ESIPT molecule with aggregation-induced emission and tunable solid-state fluorescence multicolor for anti-counterfeiting and food freshness detection. Chem Eng J 428:130986

    Article  CAS  Google Scholar 

  10. Rodembusch FS, Leusin FP, Campo LF, Stefani V (2007) Excited state intramolecular proton transfer in amino 2-(2′-hydroxyphenyl)benzazole derivatives: Effects of the solvent and the amino group position. J Lumin 126:728–734

    Article  CAS  Google Scholar 

  11. Zhao J, Ji S, Chen Y, Guo H, Yang P (2012) Excited state intramolecular proton transfer (ESIPT): From principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys 14:8803–8817

    Article  CAS  PubMed  Google Scholar 

  12. Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J (2018) Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 47:8842–8880

    Article  CAS  PubMed  Google Scholar 

  13. Nehra N, Kaushik R (2023) ESIPT-based probes for cations, anions and neutral species: Recent progress, multidisciplinary applications and future perspectives. Anal Methods 15:5268–5285

    Article  CAS  PubMed  Google Scholar 

  14. Duarte LGTA, Germino JC, Berbigier JF, Barboza CA, Faleiros MM, Simoni DA, Galante MT, Holanda MS, Rodembusch FS, Atvars TDZ (2019) White-light generation from all-solution-processed OLEDs using a benzothiazole–salophen derivative reactive to the ESIPT process. Phys Chem Chem Phys 21:1172–1183

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y, Wang R, Lin R, Xu X, Zhang X, Alsalman O, Qiu Y, Uddin A, Ouyang X (2023) Excited-state intramolecular proton transfer emitter for efficient violet-blue organic light-emitting diodes with hybridized local/charge transfer channel. Chem Eng J 465:142929

    Article  CAS  Google Scholar 

  16. Trannoy V, Léaustic A, Gadan S, Guillot R, Allain C, Clavier G, Mazerat S, Geffroy B, Yu P (2021) A highly efficient solution and solid state ESIPT fluorophore and its OLED application. New J Chem 45:3014–3022

    Article  CAS  Google Scholar 

  17. Mamada M, Inada K, Komino T, Potscavage WJ Jr, Nakanotani H, Adachi C (2017) Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system. ACS Cent Sci 3:769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moraes ES, Duarte LGTA, Germino JC, Atvars TDZ (2020) Near attack conformation as strategy for ESIPT modulation for white-light generation. J Phys Chem C 124:22406–22415

    Article  CAS  Google Scholar 

  19. Li J, Wu Y, Xu Z, Liao Q, Zhang H, Zhang Y, Fu H (2017) Tuning the organic microcrystal laser wavelength of ESIPT-active compounds via controlling the excited enol* and keto* emissions. J Mater Chem C 5:12235–12240

    Article  CAS  Google Scholar 

  20. Wang X, Li ZZ, Li SF, Li H, Chen J, Wu Y, Fu H (2017) Near-infrared organic single-crystal lasers with polymorphism-dependent excited state intramolecular proton transfer. Adv Opt Mater 5:1700027

    Article  Google Scholar 

  21. Cheng X, Zhang Y, Han S, Li F, Zhang H, Wang Y (2016) Multicolor amplified spontaneous emissions based on organic polymorphs that undergo excited-state intramolecular proton transfer. Chem Eur J 22:4899–4903

    Article  CAS  PubMed  Google Scholar 

  22. Gu H, Wang W, Wu W, Wang M, Liu Y, Jiao Y, Wang F, Wang F, Chen X (2023) Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: Design, mechanism, and application. Chem Commun 59:2056–2071

    Article  CAS  Google Scholar 

  23. Wang Y, Zhu M, Jiang E, Hua R, Na R, Li QX (2017) A Simple and rapid turn on ESIPT fluorescent probe for colorimetric and ratiometric detection of biothiols in living cells. Sci Rep 7:1–9

    ADS  PubMed  PubMed Central  Google Scholar 

  24. Lv HM, Yuan DH, Liu W, Chen Y, Au CT, Yin SF (2016) A highly selective ESIPT-based fluorescent probe for cysteine sensing and its bioimaging application in living cells. Sens Actuators B 233:173–179

    Article  CAS  Google Scholar 

  25. Bhosle AA, Banerjee M, Barooah N, Bhasikuttan AC, Kadu K, Ramanan SR, Chatterjee A (2022) ESIPT-active hydroxybenzothiazole-picolinium@CB[7]-HAp NPs based supramolecular sensing assembly for spermine, spermidine and cadaverine: Application in monitoring cancer biomarkers and food spoilage. J Photochem Photobiol A Chem 426:113770

    Article  CAS  Google Scholar 

  26. Singh AK, Nair AV, Shah SS, Ray S, Singh NDP (2023) ESIPT-, AIE-, and AIE + ESIPT-based light-activated drug delivery systems and bioactive donors for targeted disease treatment. J Med Chem 66:3732–3745

    Article  CAS  PubMed  Google Scholar 

  27. Guo L, Tian M, Zhang Z, Lu Q, Liu Z, Niu G, Yu X (2021) Simultaneous two-color visualization of lipid droplets andendoplasmic reticulum and their interplay by single fluorescentprobes in lambda mode. J Am Chem Soc 143:3169–3179

    Article  CAS  PubMed  Google Scholar 

  28. Bhowal S, Ghosh A (2021) Highly selective fluorescent turn-on–off sensing of OH−, Al3+ and Fe3+ ions by tuning ESIPT in metal organic frameworks and mitochondria targeted bio-imaging. RSC Adv 11:27787–27801

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Z, Ren M, Zhao Y, Song W, Cheng J, Lin W (2021) A fluorescent probe for specific detection of β-galactosidase in living cells and tissues based on ESIPT mechanism. Spectrochim Acta A 251:119446–119454

    Article  CAS  Google Scholar 

  30. Kachwal V, Krishna ISV, Fageria L, Chaudhary J, Roy RK, Chowdhury R, Laskar IR (2018) Exploring the hidden potential of a benzothiazole-based Schiff-base exhibiting AIE and ESIPT and its activity in pH sensing, intracellular imaging and ultrasensitive & selective detection of aluminium (Al3+). Analyst 143:3741–3748

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Wiethaus G, Toldo JM, Santos FS, Duarte RC, Gonçalves PFB, Rodembusch FS (2019) Experimental and theoretical investigation of long-wavelength fluorescence emission in push–pull benzazoles: Intramolecular proton transfer or charge transfer in the excited state? Phys Chem Chem Phys 21:4408–4421

    Article  CAS  PubMed  Google Scholar 

  32. Liang R, Li Y, Yan Z, Bai X, Lai W, Du L, Phillips DL (2023) Exploring solvent effects on the proton transfer processes of selected benzoxazole derivatives by femtosecond time-resolved fluorescence and transient absorption spectroscopies. ACS Phys Chem Au 3:181–189

    Article  CAS  PubMed  Google Scholar 

  33. Lokwani P, Nagori BP, Batra N, Goyal A, Gupta S, Singh N (2011) Benzoxazole: The molecule of diverse biological activities. J Chem Pharm Res 3:302–311

    CAS  Google Scholar 

  34. Kakkar S, Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA (2018) Design, synthesis and biological potential of heterocyclic benzoxazole scaffolds as promising antimicrobial and anticancer agents. Chem Cent J 12:96–107

    Article  PubMed  PubMed Central  Google Scholar 

  35. Angajala G, Subashini R (2020) Synthesis, molecular modeling, and pharmacological evaluation of new 2-substituted benzoxazole derivatives as potent anti-inflammatory agents. Struct Chem 31:263–273

    Article  CAS  Google Scholar 

  36. Sattar R, Mukhtar R, Atif M, Hasnain M, Irfan A (2020) Synthetic transformations and biological screening of benzoxazole derivatives: A review. J Heterocycl Chem 57:2079–2107

    Article  CAS  Google Scholar 

  37. Barcin T, Yucel MA, Ersan RH, Alagoz MA, Dogen A, Burmaoglu S, Algul O (2024) Deep learning approach to the discovery of novel bisbenzazole derivatives for antimicrobial effect. J Mol Struct 1295:136668

    Article  CAS  Google Scholar 

  38. Ersan RH, Alagoz MA, Ertan-Bolelli T, Duran N, Burmaoglu S, Algul O (2022) Head-to-head bisbenzazole derivatives as antiproliferative agents: Design, synthesis, in vitro activity, and SAR analysis. Mol Divers 25:2247–2259

    Article  Google Scholar 

  39. Kuzu B, Hepokur C, Alagoz MA, Burmaoglu S, Algul O (2022) Synthesis, biological evaluation and in silico studies of some 2-substituted benzoxazole derivatives as potential anticancer agents to breast cancer. ChemistrySelect 7

    Article  CAS  Google Scholar 

  40. Duarte LGTA, Germino JC, Braga CA, Barboza CA, Atvars TDZ, Santos FS, Rodembusch FS (2018) Photoacidity as a tool to rationalize excited state intramolecular proton transfer reactivity in flavonols. Photochem Photobiol Sci 17:231–238

    Article  CAS  PubMed  Google Scholar 

  41. da Silva RB, Coelho FL (2023) de Castro Silva Junior H, Germino JC, Atvars TDZ, Rodembusch FS, Duarte LGTA, Schneider PH (2023) Organosulfur and organoselenium functionalized benzimidazo[1,2-a]quinolines: From experimental and theoretical photophysics to all-solution-processed OLEDs. J Fluoresc. https://doi.org/10.1007/s10895-023-03358-1

    Article  PubMed  Google Scholar 

  42. De Salles HD, Coelho FL, Paixão DB, Barboza CA, Rampon DS, Rodembusch FS, Schneider PH (2021) Evidence of a photoinduced electron-transfer mechanism in the fluorescence self-quenching of 2,5-substituted selenophenes prepared through in situ reduction of elemental selenium in superbasic media. J Org Chem 86:10140–10153

    Article  PubMed  Google Scholar 

  43. Hoover GC, Seferos DS (2019) Photoactivity and optical applications of organic materials containing selenium and tellurium. Chem Sci 10:9182–9188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rampon DS, Rodembusch FS, Gonçalves PFB, Lourega RV, Merlo AA, Schneider PH (2010) An evaluation of the chalcogen atom effect on the mesomorphic and electronic properties in a new homologous series of chalcogeno esters. J Braz Chem Soc 21:2100–2107

    Article  CAS  Google Scholar 

  45. Radatz CS, Coelho FL, Gil ES, Santos FS, Schneider JMF, Gonçalves PFB, Rodembusch FS, Schneider PH (2020) Ground and excited-state properties of 1,3-benzoselenazole derivatives: A combined theoretical and experimental photophysical investigation. J Mol Struct 1207

    Article  CAS  Google Scholar 

  46. Perrin DD, Armarego WL (eds) (1997) In: Purification of Laboratory Chemicals, 4a edn. Pergamon, New York

    Google Scholar 

  47. Rodembusch FS, Brand FR, Corrêa DS, Pocos JC, Martinelli M, Stefani V (2005) Transition metal complexes from 2-(2’-hydroxyphenyl)benzoxazole: A spectroscopic and thermogravimetric stability study. Mater Chem Phys 92:389–393

    Article  CAS  Google Scholar 

  48. Santos FS, Ramasamy E, Ramamurthy V, Rodembusch FS (2016) Confinement effect on the photophysics of ESIPT fluorophores. J Mater Chem C 4:2820–2827

    Article  CAS  Google Scholar 

  49. Duarte LGTA, Rodembusch FS, Atvars TDZ, Weiss RG (2020) Experimental and theoretical investigation of excited-state intramolecular proton transfer processes of benzothiazole derivatives in amino-polydimethylsiloxanes before and after cross-linking by CO2. J Phys Chem A 124:288–299

    Article  Google Scholar 

  50. Radatz CS, Rampon DS, Balaguez RA, Alves D, Schneider PH (2014) Synthesis of 2-substituted 1,3-benzoselenazoles from carboxylic acids promoted by tributylphosphine. Eur J Org Chem 6945–6952

  51. Pracht P, Bohle F, Grimme S (2020) Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys Chem Chem Phys 22:7169–7192

    Article  CAS  PubMed  Google Scholar 

  52. Ehlert S, Stahn M, Spicher S, Grimme S (2021) Robust and efficient implicit solvation model for fast semiempirical methods. J Chem Theory Comput 17:4250–4261

    Article  CAS  PubMed  Google Scholar 

  53. Neese F (2022) Software update: The ORCA program system—Version 5.0. WIREs Comput Mol Sci 12:e1606

  54. Lin YS, Li GD, Mao SP, Chai JD (2013) Long-range corrected hybrid density functionals with improved dispersion corrections. J Chem Theory Comput 9:263–272

    Article  CAS  PubMed  Google Scholar 

  55. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  56. Takano Y, Houk KN (2005) Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77

    Article  PubMed  Google Scholar 

  57. Casanova-Páez M, Goerigk L (2021) Time-dependent long-range-corrected double-hybrid density functionals with spin-component and spin-opposite scaling: A comprehensive analysis of singlet–singlet and singlet–triplet excitation energies. J Chem Theory Comput 17:5165–5186

    Article  PubMed  Google Scholar 

  58. Sancho-García JC, Brémond É, Savarese M, Pérez-Jiménez AJ, Adamo C (2017) Partnering dispersion corrections with modern parameter-free double-hybrid density functionals. Phys Chem Chem Phys 19:13481–13487

    Article  PubMed  Google Scholar 

  59. Izsák R (2020) Single-reference coupled cluster methods for computing excitation energies in large molecules: The efficiency and accuracy of approximations. WIREs Comput Mol Sci 10

    Article  Google Scholar 

  60. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796

    Article  CAS  PubMed  Google Scholar 

  61. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: Natural bond orbital analysis program. J Comput Chem 34:1429–1437

    Article  CAS  PubMed  Google Scholar 

  62. Lu XT, Chen F (2012) Multiwfn: A multifunctional wavefunction Analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  63. de Souza B, Neese F, Izsák R (2018) On the theoretical prediction of fluorescence rates from first principles using the path integral approach. J Chem Phys 148

    Article  ADS  PubMed  Google Scholar 

  64. De Souza B, Farias G, Neese F, Izsák R (2019) Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics. J Chem Theory and Comput 15:1896–1904

    Article  Google Scholar 

  65. Hein DW, Alheim RJ, Leavitt JJ (1957) The use of polyphosphoric acid in the synthesis of 2-aryl- and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles. J Am Chem Soc 79:427–429

    Article  CAS  Google Scholar 

  66. So YH, Heeschen JP (1997) Mechanism of polyphosphoric acid and phosphorus pentoxide−methanesulfonic acid as synthetic reagents for benzoxazole formation. J Org Chem 62:3552–3561

    Article  CAS  Google Scholar 

  67. Raiford LC, Couture JR (1924) The role of weight of acyl in the migration from nitrogen to Oxygen. II J Am Chem Soc 46:2305–2318

    Article  CAS  Google Scholar 

  68. Radatz CS, Alves D, Schneider PH (2013) Direct synthesis of 2-aryl-1,3- benzoselenazoles by reaction of bis(2-aminophenyl) diselenides with aryl aldehydes using sodium metabisulfite. Tetrahedron 69:1316–1321

    Article  CAS  Google Scholar 

  69. Guallar V, Moreno M, Luch JM, Amat-Guerri F, Douhal A (1996) H-atom transfer and rotational processes in the ground and first singlet excited electronic states of 2-(2′-hydroxyphenyl)oxazole derivatives: Experimental and theoretical studies. J Phys Chem 100:19789–19794

    Article  CAS  Google Scholar 

  70. Nagaoka SI, Kusunoki J, Fujibuchi T, Hatakenaka S, Mukai K, Nagashima U (1999) Nodal-plane model of the excited-state intramolecular proton transfer of 2-(o-hydroxyaryl)benzazoles. J Photochem Photobiol A 122:151–159

    Article  CAS  Google Scholar 

  71. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Phys Chem 37:814–822

    Article  CAS  Google Scholar 

  72. Turro NJ, Scaiano JC, Ramamurthy V (2008) In: Principles of Molecular Photochemistry: An Introduction, University Science Books, 1st edn.

  73. Lins GOW, Campo LF, Rodembusch FS, Stefani V (2010) Novel ESIPT fluorescent benzazolyl-4-quinolones: Synthesis, spectroscopic characterization and photophysical properties. Dyes Pigm 84:114–120

    Article  CAS  Google Scholar 

  74. Abella CAM, Rodembusch FS, Stefani V (2004) Synthesis of novel Tröger's bases analogues. The first ones fluorescent by excited state intramolecular proton transfer (ESIPT). Tetrahedron Lett 45:5601–5604

    Article  CAS  Google Scholar 

  75. Berbigier JF, Duarte LGTA, Zawacki MF, de Araújo BB, Santos CM, Atvars TDZ, Gonçalves PFB, Petzhold CL, Rodembusch FS (2020) ATRP Initiators based on proton transfer benzazole dyes: Solid-state photoactive polymer with very large stokes shift. ACS Appl Polym Mater 2:1406–1416

    Article  CAS  Google Scholar 

  76. Lu T, Chen Q (2021) Interaction region indicator: A simple real space function clearly revealing both chemical bonds and weak interactions. Chem Methods 1:231–239

    Article  CAS  Google Scholar 

  77. Yang Y, Ding Y, Shi W, Ma F, Li Y (2020) The effects of amino group meta- and para-substitution on ESIPT mechanisms of amino 2-(2’-hydroxyphenyl) benzazole derivatives. J Lumin 218

    Article  CAS  Google Scholar 

  78. Yang Y, Luo X, Ma F, Li Y (2021) Substituent effect on ESIPT mechanisms and photophysical properties of HBT derivatives. Spectrochim Acta A 250

    Article  CAS  Google Scholar 

  79. Bader RFW, Nguyen-Dang TT (1981) Quantum Theory of Atoms in Molecules - Dalton Revisited. In: Advances in Quantum Chemistry. Academic Press, pp 63–124

  80. Emamian S, Lu T, Kruse H, Emamian H (2019) Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J Comput Chem 40:2868–2881

    Article  CAS  PubMed  Google Scholar 

  81. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Preiss J, Kage D, Hoffmann K, Martínez TJ, Resch-Genger U, Presselt M (2018) Ab initio prediction of fluorescence lifetimes involving solvent environments by means of COSMO and vibrational broadening. J Phys Chem A 122:9813–9820

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Theoretical calculations were performed using the Lobo Carneiro supercomputer from Núcleo Avançado de Computação de Alto Desemprenho (NACAD) under Project ID a20006 and the Sagarana Cluster from CEPAD—Centro de Processamento de Alto Desempenho ICB/UFMG. The authors would also like to thank the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing the HPC resources of the SDumont supercomputer, which contributed to the research results reported in this paper. (URL:http://sdumont.lncc.br).

Funding

This research was funded by FAPERGS (17/2551-0000968-1 and PRONEX), CNPq (305954/2019-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) – Finance Code 001 for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

L.K.R.: Formal analysis, editing, and review of the manuscript. B.T.D.: Formal analysis. H.C.S.: Data Validation, formal analysis, editing, and review of the manuscript. P.H.S.: Resources, data validation, editing and review of the manuscript, funding acquisition. F.S.R.: Conceptualization, data validation, resources, editing and review of the manuscript, funding acquisition. project administration

Corresponding authors

Correspondence to Henrique de Castro Silva Junior or Fabiano Severo Rodembusch.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Conflicts of Interest

The authors have no conflict of interest in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1192 KB)

Supplementary file2 (MP4 5267 KB)

Supplementary file3 (MP4 4927 KB)

Supplementary file4 (MP4 5054 KB)

Supplementary file5 (MP4 2715 KB)

Supplementary file6 (MP4 2104 KB)

Supplementary file7 (MP4 2334 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimann, L.K., Dalberto, B.T., Schneider, P.H. et al. Benzazole-Based ESIPT Fluorophores: Proton Transfer from the Chalcogen Perspective. A Combined Theoretical and Experimental Study. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03595-y

Keywords

Navigation