Skip to main content
Log in

Analysis of Structural, Photoluminescence, and Colorimetric Performance of Gd-Incorporated BNT Ceramic

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Structural, optical, photoluminescence and colorimetric analyses of Gd (1–5 mol %) doped BNT ceramics synthesized by the solid-state reaction technique are reported. Structural analyses of all the samples are done by the X-ray diffraction method. It is shown that the samples have rhombohedral crystal structures with an R3C space group. The energy band gap of all the phosphors is computed from the UV–visible absorbance spectra. Photoluminescence behaviors are analyzed from the excitation along with the emission spectra of the prepared materials. The critical quenching concentration with the critical energy transfer distance is observed owing to the dipole–dipole interactions between the materials. Colorimetric analyses are carried out with the help of CIE chromaticity. Moreover, the color purity, correlated color temperature, color rendering index, and luminous efficiency of radiation values are evaluated by using the chromaticity coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request.

References

  1. Roy R, Dutta A (2023) Structural, optical, electrical, and dielectric relaxation properties of rare earth containing sodium bismuth titanate Na0.5Bi0.5TiO3 perovskite: Effect of ionic radius. J Rare Earths. https://doi.org/10.1016/j.jre.2023.04.011

    Article  Google Scholar 

  2. Raghavender M, Kumar GS, Prasad G (2006) Modification of dielectric relaxations in sodium bismuth titanate with samarium doping. J Phys Chem Solid 67:1803–1808. https://doi.org/10.1016/j.jpcs.2006.04.004

    Article  CAS  Google Scholar 

  3. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition. Sov Phys Solid State 2:2651–2654. https://ci.nii.ac.jp/naid/20001290166

  4. Lei N, Zhu M, Yang P, Wang L, Wang L, Hou Y, Yan H (2011) Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys 109:054102. https://doi.org/10.1063/1.3555598

    Article  CAS  Google Scholar 

  5. Viola G, Ning H, Wei X, Deluca M, Adomkevicius A, Khaliq J, Reece MJ, Yan H (2013) Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics. J Appl Phys 114:014107. https://doi.org/10.1063/1.4812383

    Article  CAS  Google Scholar 

  6. Wang CM, Wang JF (2006) High performance aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification. Appl Phys Lett 89:202905. https://doi.org/10.1063/1.2388253

    Article  CAS  Google Scholar 

  7. Hiruma Y, Nagata H, Takenaka T (2009) Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys 105:084112. https://doi.org/10.1063/1.3115409

    Article  CAS  Google Scholar 

  8. Wang CM, Wang JF, Zhang S, Shrout TR (2009) Electromechanical Properties of A-Site (LiCe)-Modified Sodium Bismuth Titanate (Na0.5Bi4.5Ti4O15) Piezoelectric Ceramics at Elevated Temperature. J Appl Phys 105:094110. https://doi.org/10.1063/1.3117219

    Article  CAS  Google Scholar 

  9. Fan P, Zhang Y, Zhang ST, Xie B, Zhu Y, Marwat MA, Ma W, Liu K, Shu L, Zhang H (2019) Low-temperature sintered (Na1/2Bi1/2)TiO3-based incipient piezoceramics for co-fired multilayer actuator application. J Materiomics 5:480–488. https://doi.org/10.1016/j.jmat.2019.01.004

    Article  Google Scholar 

  10. Kreisel J, Alexe M, Thomas PA (2012) A photoferroelectric material is more than the sum of its parts. Nat Mater 11:260. https://doi.org/10.1038/nmat3282

    Article  CAS  PubMed  Google Scholar 

  11. Hwang SC, Lynch CS, McMeeking RM (1995) Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall Mater 43:2073–2084. https://doi.org/10.1016/0956-7151(94)00379-V

    Article  CAS  Google Scholar 

  12. Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309:391–392. https://doi.org/10.1126/science.1113357

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Xu CN, Yamada H, Nishikubo K, Zheng XG (2005) Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics. Adv Mater 17:1254–1258. https://doi.org/10.1002/adma.200401406

    Article  CAS  Google Scholar 

  14. Wang ZL (2012) Progress in piezotronics and piezo-phototronics. Adv Mater 24:4632–4646. https://doi.org/10.1002/adma.201104365

    Article  CAS  PubMed  Google Scholar 

  15. Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout TR, Xu Z, Chen LQ, Li F (2020) Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 577:350–354. https://doi.org/10.1038/s41586-019-1891-y

    Article  CAS  PubMed  Google Scholar 

  16. Lin Y, Nan CW, Wang J, He H, Zhai J, Jiang L (2004) Photoluminescence of nanosized Na0.5Bi0.5TiO3 synthesized by a sol–gel process. Mater Lett 58:829–832. https://doi.org/10.1016/j.matlet.2003.07.025

    Article  CAS  Google Scholar 

  17. Dung DD, Hung NT, Odkhuu D (2021) Magnetic and optical properties of new (1–x) Bi0.5Na0.5TiO3 + xCaMnO3-δ solid solution materials. Mater Sci Eng B 263:114902. https://doi.org/10.1016/j.mseb.2020.114902

    Article  CAS  Google Scholar 

  18. Hung NT, Bac LH, Hoang NT, Vinh PV, Trung NN, Dung DD (2018) Structural, optical, and magnetic properties of SrFeO3-δ-modified Bi0.5Na0.5TiO3 materials. Phys B Condens Matter 531:75–78. https://doi.org/10.1016/j.physb.2017.12.021

    Article  CAS  Google Scholar 

  19. Dung DD, Hue MM, Dung NQ, Lam NH, Phuong LTK, Bac LH, Trung NN, Duc NV, Odkhuu D (2020) Enhancing room-temperature ferromagnetism in Bi0.5Na0.5TiO3 via FeTiO3 solid solution. J Electroceram 44:129–135. https://doi.org/10.1007/s10832-020-00203-w

    Article  CAS  Google Scholar 

  20. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Cryst B28:3384–3392. https://doi.org/10.1107/S0567740872007976

    Article  Google Scholar 

  21. Li L, Xu M, Zhang Q, Chen P, Wang N, Xiong D, Peng B, Liu L (2018) Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics. Ceram Int 44:343–350. https://doi.org/10.1016/j.ceramint.2017.09.179

    Article  CAS  Google Scholar 

  22. Han F, Deng J, Liu X, Yan T, Ren S, Ma X, Liu S, Peng B, Liu L (2017) High-temperature dielectric and relaxation behavior of Yb-doped Bi0.5Na0.5TiO3 ceramics. Ceram Int 43:5564–5573. https://doi.org/10.1016/j.ceramint.2017.01.086

    Article  CAS  Google Scholar 

  23. Wei T, Zhang Z, Zhou QJ, An DM, Li ZP, Sun FC (2014) Bright green emission in Ho doped Bi1/2Na1/2TiO3 ferroelectric ceramics. Mater Lett 115:129–131. https://doi.org/10.1016/j.matlet.2013.10.051

    Article  CAS  Google Scholar 

  24. Dunce M, Krieke G, Birks E, Bikse L, Antonova M, Sarakovkis A (2020) The role of structural disorder on luminescence of Eu-doped Na0.5Bi0.5TiO3. J Appl Phys 128:244104. https://doi.org/10.1063/5.0031305

    Article  CAS  Google Scholar 

  25. Kandula KR, Asthana S, Raavi SSK (2018) Multifunctional Nd3+ substituted Na0.5Bi0.5TiO3 as lead-free ceramics with enhanced luminescence, ferroelectric and energy harvesting properties. RSC Adv 8:15282–15289. https://doi.org/10.1039/C8RA01349G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun H, Peng D, Wang X, Tang M, Zhang Q, Yao X (2011) Strong red emission in Pr doped (Bi0.5Na0.5)TiO3 ferroelectric ceramics. J Appl Phys 110:016102. https://doi.org/10.1063/1.3606425

    Article  CAS  Google Scholar 

  27. Dakhel AA (2001) Optical constants of evaporated gadolinium oxide. J Opt A Pure Appl Opt 3:452–454. https://doi.org/10.1088/1464-4258/3/6/304

    Article  CAS  Google Scholar 

  28. Lenka S, Badapanda T, Nayak P, Sarangi S, Anwar S, Tripathy SN (2023) Investigation of crystal structure and variable range hopping conduction mechanism in Gd doped Na0.5Bi0.5TiO3 ceramics. J Mol Struc 1274:134413. https://doi.org/10.1016/j.molstruc.2022.134413

    Article  CAS  Google Scholar 

  29. Thoan NH, Lam NH, Hieu HTT, Hoang NT, Vinh PV, Hao NV, Trung NN, Van DQ, Dung DD (2021) Tunable optical properties of Bi1/2Na1/2TiO3 materials via Sm1/2Na1/ 2TiO3 addition. Vacuum 191:110389. https://doi.org/10.1016/j.vacuum.2021.110389

    Article  CAS  Google Scholar 

  30. Ma C, Wang Y, Zhang J, Hu Y, Zhai Z, Wu J, Zhou W, Lv X (2021) Photoluminescence and optical temperature sensing properties of Dy3+-doped Na0.5Bi0.5TiO3 multifunctional ferroelectric ceramics. Spectrochim Acta A Mol Biomol Spectrosc 254:119636. https://doi.org/10.1016/j.saa.2021.119636

    Article  CAS  PubMed  Google Scholar 

  31. Du P, Luo L, Li W, Zhang Y, Chen H (2013) Electrical and luminescence properties of Er-doped Bi0.5Na0.5TiO3 ceramics. Mater Sci Eng B 178:1219–1223. https://doi.org/10.1016/j.mseb.2013.08.007

    Article  CAS  Google Scholar 

  32. Singh V, Rao BRV, Rao AS, Rao JL, Irfan M (2020) Photoluminescence and electron spin resonance study on narrowband UVB emitting Gd-doped LaPO4 phosphors. Optik 206:164020. https://doi.org/10.1016/j.ijleo.2019.164020

    Article  CAS  Google Scholar 

  33. Behara S, Krishna RH, Muralidhar M, Murakami M, Irfan M, Najma S, Thomas T (2019) Amphotericity-spectroscopy correlations in Eu doped sodium bismuth titanate (Na0.5Bi0.5TiO3). Materialia 7:100426. https://doi.org/10.1016/j.mtla.2019.100426

    Article  CAS  Google Scholar 

  34. Behara S, Ghatti L, Kanthamani S, Dumpala M, Thomas T (2018) Structural, optical, and Raman studies of Gd doped sodium bismuth titanate. Ceram Int 44:12118–12124. https://doi.org/10.1016/j.ceramint.2018.03.233

    Article  CAS  Google Scholar 

  35. Prusty RK, Kuruva P, Ramamurty U, Thomas T (2013) Correlations between mechanical and photoluminescence properties in Eu doped sodium bismuth titanate. Solid State Commun 173:38–41. https://doi.org/10.1016/j.ssc.2013.09.002

    Article  CAS  Google Scholar 

  36. Xia X, Jiang X, Chen C, Jiang X, Chen Y, Tu N, Luo Y, Jiang Y (2017) Enhanced piezoelectric performance and orange-red emission of Sm3+ doped (Na1/2Bi1/2)TiO3 based lead-free ceramics. Ceram Int 43:376–384. https://doi.org/10.1016/j.ceramint.2016.09.168

    Article  CAS  Google Scholar 

  37. Sun M, Li P, Du J, Han W, Hao J, Zhao K, Zeng H, Li W (2022) Electric field-induced photoluminescence quenching in Pr-doped BNT ceramics across the MPB region. J Materiomics 8:288–294. https://doi.org/10.1016/j.jmat.2021.10.001

    Article  Google Scholar 

  38. Wei T, Sun FC, Zhao CZ, Li CP, Yang M, Wang YQ (2013) Photoluminescence properties in Sm doped Bi1/2Na1/2TiO3 ferroelectric ceramics. Ceram Int 39:9823–9828. https://doi.org/10.1016/j.ceramint.2013.05.094

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Nameta Nameeta Brahme, Professor, SoS in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur (C.G.)-, India for carrying out the PL measurements.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

R. Paikaray, T. Richhariya: Investigation, Methodology, Formal analysis, Software, Validation, Visualization, Writing– original draft, S. Behera: Writing– review & editing; T. Badapanda, Satya. N. Tripathy: Resources, Visualization, Supervision, Writing- review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. Badapanda.

Ethics declarations

Ethics Approval

The authors declare that no animal or animal data was used in any study or experiment mentioned in this manuscript. We approve all the ethics.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paikaray, R., Badapanda, T., Richhariya, T. et al. Analysis of Structural, Photoluminescence, and Colorimetric Performance of Gd-Incorporated BNT Ceramic. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03544-1

Keywords

Navigation