Skip to main content
Log in

Functionalized Graphene Quantum Dots (GQDs) based Label-Free Optical Fluorescence Sensor for CD59 Antigen Detection and Cellular Bioimaging

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Cluster of differentiation (CD59), a cell surface glycoprotein, regulates the complement system to prevent immune damage. In cancer, altered CD59 expression allows tumors to evade immune surveillance, promote growth, and resist certain immunotherapies. Targeting CD59 could enhance cancer treatment strategies by boosting the immune response against tumors. Herein, we present a one-step synthesis of Polyethyleneimine (PEI) functionalized graphene quantum dots (Lf-GQDs) from weathered lemon leaf extract. The fabricated Lf-GQDs were successfully used for the quantitative detection of the cluster of CD59 antigen that is reported for its expression in different types of cancer. In this work, we utilized orientation-based attachment of CD59 antibody (Anti-CD59). Our findings reveal that, instead of using random serial addition of antigen or antibody, oriented conjugation saves accumulated concentration offering greater sensitivity and selectivity. The Anti-CD59@Lf-GQDs immunosensor was fabricated using the oriented conjugation of antibodies onto the Lf-GQDs surface. Besides, the fabricated immunosensor demonstrated detection of CD59 in the range of 0.01 to 40.0 ng mL−1 with a low detection limit of 5.3 pg mL−1. Besides, the cellular uptake potential of the synthesized Lf-GQDs was also performed in A549 cells using a bioimaging study. The present approach represents the optimal utilization of Anti-CD59 and CD59 antigen. This approach could afford a pathway for constructing oriented conjugation of antibodies on the nanomaterials-based immunosensor for different biomarkers detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Data will be made available on request.

References

  1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I (2021) The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127(16):3029–3030

    Article  PubMed  Google Scholar 

  2. Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discov 12(1):31–46

    Article  CAS  PubMed  Google Scholar 

  3. Zhang R, Liu Q, Liao Q, Zhao Y (2018) CD59: a promising target for tumor immunotherapy. Future Oncol 14(8):781–791

    Article  CAS  PubMed  Google Scholar 

  4. Li B, Lin H, Fan J, Lan J, Zhong Y, Yang Y, Li H, Wang Z (2013) CD59 is overexpressed in human lung cancer and regulates apoptosis of human lung cancer cells. Int J Oncol 43(3):850–858

    Article  CAS  PubMed  Google Scholar 

  5. Zhao WP, Zhu B, Duan YZ, Chen ZT (2009) Neutralization of complement regulatory proteins CD55 and CD59 augments therapeutic effect of herceptin against lung carcinoma cells. Oncol Rep 21(6):1405–1411

    CAS  PubMed  Google Scholar 

  6. Zhou Y, Chu L, Wang Q, Dai W, Zhang X, Chen J, Li L, Ding P, Zhang L, Gu H (2018) CD59 is a potential biomarker of esophageal squamous cell carcinoma radioresistance by affecting DNA repair. Cell Death Dis 9(9):887

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pang B, Zhu Y, Ni J, Thompson J, Malouf D, Bucci J, Graham P, Li Y (2020) Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics 10(5):2309–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nene LC, Managa ME, Oluwole DO, Mafukidze DM, Sindelo A, Nyokong T (2019) The photo-physicochemical properties and in vitro photodynamic therapy activity of differently substituted-zinc (II)-phthalocyanines and graphene quantum dots conjugates on MCF7 breast cancer cell line. Inorg Chim Acta 488:304–311

    Article  CAS  Google Scholar 

  9. Tade RS, Nangare SN, Patil AG, Pandey A, Deshmukh PK, Patil DR, Agrawal TN, Mutalik S, Patil AM, More MP, Bari SB, Patil PO (2020) Recent Advancement in Bio-precursor derived graphene quantum dots: Synthesis, Characterization and Toxicological Perspective. Nanotechnology 31(29):292001

    Article  CAS  PubMed  Google Scholar 

  10. Kalkal A, Pradhan R, Kadian S, Manik G, Packirisamy G (2020) Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer. ACS Appl Bio Mater 3(8):4922–4932

    Article  CAS  PubMed  Google Scholar 

  11. Kalkal A, Kadian S, Kumar S, Manik G, Sen P, Kumar S, Packirisamy G (2022) Ti3C2-MXene decorated with nanostructured silver as a dual-energy acceptor for the fluorometric neuron specific enolase detection. Biosens Bioelectron 195:113620

    Article  CAS  PubMed  Google Scholar 

  12. Miao H, Wang L, Zhuo Y, Zhou Z, Yang X (2016) Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens Bioelectron 86:83–89

    Article  CAS  PubMed  Google Scholar 

  13. Tade RS, Patil PO (2021) Fabrication of Poly-l-lysine-Functionalized Graphene Quantum Dots for the Label-Free Fluorescent-Based Detection of Carcinoembryonic Antigen. ACS Biomater Sci Eng 8(2):470–483

  14. Kalkal A, Pradhan R, Packirisamy G (2023) Gold nanoparticles modified reduced graphene oxide nanosheets based dual-quencher for highly sensitive detection of carcinoembryonic antigen. Int J Biol Macromol 242:125157

    Article  CAS  PubMed  Google Scholar 

  15. Bharathi G, Lin F, Liu L, Ohulchanskyy TY, Hu R, Qu J (2021) An all-graphene quantum dot förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker. Colloids Surf, B 198:111458

    Article  CAS  Google Scholar 

  16. Bhatnagar D, Kumar V, Kumar A, Kaur IJB (2016) Bioelectronics. Graphene quantum dots FRET based sensor for early detection of heart attack in human 79:495–499

    CAS  Google Scholar 

  17. Zhang B, Yu J, Liu C, Wang J, Han H, Zhang P, Shi D (2016) Improving detection sensitivity by oriented bioconjugation of antibodies to quantum dots with a flexible spacer arm for immunoassay. RSC Adv 6(55):50119–50127

    Article  CAS  Google Scholar 

  18. Tajima N, Takai M, Ishihara K (2011) Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity. Anal Chem 83(6):1969–1976

    Article  CAS  PubMed  Google Scholar 

  19. Annio G, Jennings TL, Tagit O, Hildebrandt N (2018) Sensitivity Enhancement of Forster Resonance Energy Transfer Immunoassays by Multiple Antibody Conjugation on Quantum Dots. Bioconjug Chem 29(6):2082–2089

    Article  CAS  PubMed  Google Scholar 

  20. Mustafaoglu N, Kiziltepe T, Bilgicer B (2017) Site-specific conjugation of an antibody on a gold nanoparticle surface for one-step diagnosis of prostate specific antigen with dynamic light scattering. Nanoscale 9(25):8684–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qu S, Qiao Z, Zhong W, Liang K, Jiang X, Shang L (2022) Chirality-Dependent Dynamic Evolution of the Protein Corona on the Surface of Quantum Dots. ACS Appl Mater Interfaces 14(39):44147–44157

    Article  CAS  PubMed  Google Scholar 

  22. Shahid S, Mohiyuddin S, Packirisamy G (2020) Synthesis of multi-color fluorescent carbon dots from mint leaves: A robust bioimaging agent with potential antioxidant activity. J Nanosci Nanotechnol 20(10):6305–6316

    Article  CAS  PubMed  Google Scholar 

  23. Han Z, Zhang H, He L, Pan S, Liu H, Hu X (2019) One-pot hydrothermal synthesis of nitrogen and sulfur co-doped carbon dots and their application for sensitive detection of curcumin and temperature. Microchem J 146:300–308

    Article  CAS  Google Scholar 

  24. Bekdemir A, Stellacci F (2016) A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles. Nat Commun 7(1):1–8

    Article  Google Scholar 

  25. Brazhnik K, I. Nabiev I, Sukhanova A (2014) Oriented conjugation of single-domain antibodies and quantum dots, Quantum Dots: Appl Biol 129–140

  26. Tade RS, Patil PO (2022) Biofabricated functionalized graphene quantum dots (fGQDs): unraveling its fluorescence sensing mechanism of human telomerase reverse transcriptase (hTERT) antigen and in vitro bioimaging application. Biomed Mater 17(5):055010

    Article  Google Scholar 

  27. Ettinger A, Wittmann T (2014) Fluorescence live cell imaging. Methods Cell Biol 123:77–94

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kir S, Dehri I, Onal Y, Esen R (2021) Graphene quantum dots prepared from dried lemon leaves and microcrystalline mosaic structure. Luminescence 36(6):1365–1376

    Article  CAS  PubMed  Google Scholar 

  29. Xue M, Zhan Z, Zou M, Zhang L, Zhao S (2016) Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J Chem 40(2):1698–1703

    Article  CAS  Google Scholar 

  30. Singh L, Sharma T, Singh V (2021) Study of structural and functional properties of fluorescent EDTA@ CQDs synthesized from peanut shells via pyrolysis technique. Materials Today: Proceedings 44:192–198

    CAS  Google Scholar 

  31. Tade RS, Patil PO (2020) Green synthesis of fluorescent graphene quantum dots and its application in selective curcumin detection. Curr Appl Phys 20(11):1226–1236

    Article  Google Scholar 

  32. Tripathi K, Driskell JD (2018) Quantifying Bound and Active Antibodies Conjugated to Gold Nanoparticles: A Comprehensive and Robust Approach To Evaluate Immobilization Chemistry. ACS Omega 3(7):8253–8259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Worsley GJ, Kumarswami N, Minelli C, Noble JE (2015) Characterisation of antibody conjugated particles and their influence on diagnostic assay response. Anal Methods 7(22):9596–9603

    Article  CAS  Google Scholar 

  34. Bhatnagar D, Kumar V, Kumar A, Kaur I (2016) Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens Bioelectron 79:495–499

    Article  CAS  PubMed  Google Scholar 

  35. Byzova NA, Safenkova IV, Slutskaya ES, Zherdev AV, Dzantiev BB (2017) Less is more: A comparison of antibody–gold nanoparticle conjugates of different ratios. Bioconjug Chem 28(11):2737–2746

    Article  CAS  PubMed  Google Scholar 

  36. Vallina-Garcia R, del Mar García-Suárez M, Fernández-Abedul MT, Méndez FJ, Costa-García A (2007) Oriented immobilisation of anti-pneumolysin Fab through a histidine tag for electrochemical immunosensors. Biosens Bioelectron 23(2):210–217

  37. Neubert H, Jacoby ES, Bansal SS, Iles RK, Cowan DA, Kicman AT (2002) Enhanced affinity capture MALDI-TOF MS: orientation of an immunoglobulin G using recombinant protein G. Anal Chem 74(15):3677–3683

    Article  CAS  PubMed  Google Scholar 

  38. Wang A, Vangala K, Vo T, Zhang D, Fitzkee NC (2014) A three-step model for protein–gold nanoparticle adsorption. J Phys Chem C 118(15):8134–8142

    Article  CAS  Google Scholar 

  39. Saha B, Evers TH, Prins MW (2014) How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing. Anal Chem 86(16):8158–8166

    Article  CAS  PubMed  Google Scholar 

  40. Nohwal B, Pundir C (2020) An electrochemical CD59 targeted noninvasive immunosensor based on graphene oxide nanoparticles embodied pencil graphite for detection of lung cancer. Microchem J 156:104957

    Article  Google Scholar 

  41. Tade RS, Patil PO (2022) Fabrication of Poly (aspartic) acid functionalized graphene quantum dots based FRET sensor for selective and sensitive detection of MAGE-A11 antigen. Microchem J 107971

  42. Zhao L, Cheng M, Liu G, Lu H, Gao Y, Yan X, Liu F, Sun P, Lu G (2018) A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen. Sens Actuators, B Chem 273:185–190

    Article  CAS  Google Scholar 

  43. Zhan Y, Yang S, Luo F, Guo L, Zeng Y, Qiu B, Lin Z (2020) Emission Wavelength Switchable Carbon Dots Combined with Biomimetic Inorganic Nanozymes for a Two-Photon Fluorescence Immunoassay. ACS Appl Mater Interfaces 12(27):30085–30094

    Article  CAS  PubMed  Google Scholar 

  44. Shi L, Zheng W, Miao H, Liu H, Jing X, Zhao Y (2020) Ratiometric persistent luminescence aptasensors for carcinoembryonic antigen detection. Mikrochim Acta 187(11):615

    Article  CAS  PubMed  Google Scholar 

  45. Choudhary M, Yadav P, Singh A, Kaur S, Ramirez-Vick J, Chandra P, Arora K, Singh SP (2016) CD 59 targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28(10):2565–2574

    Article  CAS  Google Scholar 

  46. Landi AP, Wilson AB, Davies A, Lachmann PJ, Ferriani VP, Seilly DJ, Assis-Pandochi AI (2003) Determination of CD59 protein in normal human serum by enzyme immunoassay, using octyl-glucoside detergent to release glycosyl-phosphatidylinositol-CD59 from lipid complex. Immunol Lett 90(2–3):209–213

    Article  CAS  PubMed  Google Scholar 

  47. Gao T, Wang X, Yang L-Y, He H, Ba X-X, Zhao J, Jiang F-L, Liu Y (2017) Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging. ACS Appl Mater Interfaces 9(29):24846–24856

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the SERB-DST, Government of India (ECR/2017/000905) for research funding and HRPIPER, Shirpur, for providing the required facilities. We are thankful to STIC Cochin and IIT, Roorkee for providing characterization facilities.

Funding

The authors are grateful to the SERB-DST, Government of India (ECR/2017/000905) for research funding.

Author information

Authors and Affiliations

Authors

Contributions

Pravin O. Patil: Conceptualization, review of original draft, supervision, editing, funding acquisition. Rahul S. Tade: Conceptualization, experimentation, data curation, writing of original draft, Ashish Kalkal: Review of original draft, comments and visualization.

Corresponding author

Correspondence to Pravin Onkar Patil.

Ethics declarations

Ethical Approval

Not Applicable.

Conflict of Interest

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 945 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tade, R.S., Kalkal, A. & Patil, P.O. Functionalized Graphene Quantum Dots (GQDs) based Label-Free Optical Fluorescence Sensor for CD59 Antigen Detection and Cellular Bioimaging. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03501-y

Keywords

Navigation