Skip to main content

Advertisement

Log in

A Dual-mode Ratiometric Fluorometric and Colorimetric Platform Based on Nitrogen-doped Carbon Dots and o-phenylenediamine for the Detection of Nitrite

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, a dual-mode ratiometric fluorometric and colorimetric platform for the determination of nitrite in pickles was proposed by exquisitely employing the fact that non-fluorescent o-Phenylenediamine (OPD) was oxidized by nitrite under acidic conditions to form fluorescent 2,3-diaminophenazine (DAP) (Em = 575), which meanwhile quench the fluorescent nitrogen-doped carbon dots (N-CDs) at 455 nm, the ratio of fluorescence intensity of DAP to N-CDs (F575/F455) changed with the increase of nitrite accompanied by visible color changes. Thus, nitrite can be quantitatively detected within a wide linear range (10–500 µM) with a low detection limit of 0.45 µM due to the high quantum yield of 39.7% of N-CDs. In addition, the colour of the N-CDs/OPD system changed from transparent to yellow when the nitrite was introduced, enabling colorimetric and on-site visual detection. The detection limit of the colorimetric method was 3.03 µM with a linear range of 10–500 µM. The proposed ratiometric fluorometric method has pleasant selectivity and good immunity to interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All relevant data are presented in the manuscript.

References

  1. Hou JC, Jiang CG, Zhong CL (2013) Nitrite level of pickled vegetables in Northeast China. Food Control 29(1):7–10. https://doi.org/10.1016/j.foodcont.2012.05.067

    Article  CAS  Google Scholar 

  2. Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, He L, Lu ZL (2017) Methods for the detection and determination of nitrite and nitrate: a review. Talanta 165:709–720. https://doi.org/10.1016/j.talanta.2016.12.044

    Article  CAS  PubMed  Google Scholar 

  3. Choi SY, Chung MJ, Lee SJ, Shin JH, Sung NJ (2007) N-nitrosamine inhibition by strawberry, garlic, kale, the effects of nitrite-scavenging and N-nitrosamine formation by functional compounds in strawberry and garlic. Food Control 18(5):485–491. https://doi.org/10.1016/j.foodcont.2005.12.006

    Article  CAS  Google Scholar 

  4. Adarsh N, Shanmugasundaram M, Ramaiah D (2013) Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal Chem 85(21):10008–10012. https://doi.org/10.1021/ac4031303

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Hou J, Shen X, He Q, Hou C, Huo D (2020) Fluorescence-based measurements for the determination of nitrite using a coumarin derivative sensor based on inner filter effect. Anal Methods 12(8):1107–1114. https://doi.org/10.1039/c9ay02431j

    Article  CAS  Google Scholar 

  6. Zuo Y, Wang C, Van T (2006) Simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples by ion-pair high-performance liquid chromatography. Talanta 70(2):281–285. https://doi.org/10.1016/j.talanta.2006.02.034

    Article  CAS  PubMed  Google Scholar 

  7. Yang S, Liu X, Zeng X, Xia B, Gu J, Luo S, Mai N, Wei W (2010) Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sens Actuators B Chem 145(2):762–768. https://doi.org/10.1016/j.snb.2010.01.032

    Article  CAS  Google Scholar 

  8. Kalaycıoğlu Z, Erim FB (2016) Simultaneous determination of nitrate and nitrite in fish products with improved sensitivity by sample stacking-capillary electrophoresis. Food Anal Methods 9:706–711. https://doi.org/10.1007/s12161-015-0241-4

    Article  Google Scholar 

  9. Wang L, Li B, Zhang L, Zhang L, Zhao H (2012) Fabrication and characterization of a fluorescent sensor based on rh 6G-functionlized silica nanoparticles for nitrite ion detection. Sens Actuators B Chem 171:946–953. https://doi.org/10.1016/j.snb.2012.06.008

    Article  CAS  Google Scholar 

  10. Liu H, Yang G, Abdel-Halim E, Zhu JJ (2013) Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters. Talanta 104:135–139. https://doi.org/10.1016/j.talanta.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  11. Hao X, Liang Y, Zhen H, Sun X, Liu X, Li M, Shen A, Yang Y (2020) Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2. J Solid State Chem 287:121323. https://doi.org/10.1016/j.jssc.2020.121323

    Article  CAS  Google Scholar 

  12. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  13. Zan M, Rao L, Huang H, Xie W, Zhu D, Li L, Qie X, Guo SS, Zhao X-Z, Liu W (2018) A strong green fluorescent nanoprobe for highly sensitive and selective detection of nitrite ions based on phosphorus and nitrogen co-doped carbon quantum dots. Sens Actuators B Chem 262:555–561. https://doi.org/10.1016/j.snb.2017.12.177

    Article  CAS  Google Scholar 

  14. Liu Y, Luo S, Wu P, Ma C, Wu X, Xu M, Li W, Liu S (2019) Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging. Anal Chim Acta 1090:133–142. https://doi.org/10.1016/j.aca.2019.09.015

    Article  CAS  PubMed  Google Scholar 

  15. Jing J, Wen JL, Lin L, Yuan J, Yi FG, Shuang SM (2019) Orange luminescent carbon dots as fluorescent probe for detection of nitrite. Chin J Anal Chem 47(4):560–566. https://doi.org/10.1016/s1872-2040(19)61155-2

    Article  Google Scholar 

  16. He H, Sun DW, Wu Z, Pu H, Wei Q (2022) On-off-on fluorescent nanosensing: materials, detection strategies and recent food applications. Trends Food Sci Technol 119:243–256. https://doi.org/10.1016/j.tifs.2021.11.029

    Article  CAS  Google Scholar 

  17. Guo Y, Wang R, Wei C, Li Y, Fang T, Tao T (2023) Carbon quantum dots for fluorescent detection of nitrite: a review. Food Chem 135749. https://doi.org/10.1016/j.foodchem.2023.135749

    Article  Google Scholar 

  18. Kong Y, Cheng Q, He Y, Ge Y, Zhou J, Song G (2020) A dual-modal fluorometric and colorimetric nanoprobe based on graphitic carbon nitrite quantum dots and fe (II)-bathophenanthroline complex for detection of nitrite in sausage and water. Food chem 312:126089. https://doi.org/10.1016/j.foodchem.2019.126089

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Xue H, Liu J, Wang Q, Wang L (2018) Carbon quantum dot-based fluorometric nitrite assay by exploiting the oxidation of iron (II) to iron (III). Microchim Acta 185:1–7. https://doi.org/10.1007/s00604-018-2668-y

    Article  CAS  Google Scholar 

  20. Li F, Liu J, Hu Y, Deng N, He J (2018) An ultrasensitive label-free colorimetric assay for glutathione based on Ag+ regulated autocatalytic oxidation of o-phenylenediamine. Talanta 186:330–336. https://doi.org/10.1016/j.talanta.2018.04.078

    Article  CAS  PubMed  Google Scholar 

  21. Wu C, Zhu L, Lu Q, Li H, Zhang Y, Yao S (2019) A dual-signal colorimetric and ratiometric fluorescent nanoprobe for enzymatic determination of uric acid by using silicon nanoparticles. Microchim Acta 186:1–8. https://doi.org/10.1007/s00604-019-3862-2

    Article  CAS  Google Scholar 

  22. Wang L, Liu Y, Yang Z, Wang Y, Rao H, Yue G, Wu C, Lu C, Wang X (2020) A ratiometric fluorescence and colorimetric dual-mode assay for H2O2 and xanthine based on Fe, N co-doped carbon dots. Dyes Pigm 180:108486. https://doi.org/10.1016/j.dyepig.2020.108486

    Article  CAS  Google Scholar 

  23. Chen Y, Zhao C, Yue G, Yang Z, Wang Y, Rao H, Zhang W, Jin B, Wang X (2020) A highly selective chromogenic probe for the detection of nitrite in food samples. Food Chem 317:126361

    Article  CAS  PubMed  Google Scholar 

  24. Liang Z, Kang M, Payne GF, Wang X, Sun R (2016) Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Appl Mater Interfaces 8(27):17478–17488. https://doi.org/10.1021/acsami.6b04826

    Article  CAS  PubMed  Google Scholar 

  25. Yi Z, Li X, Zhang H, Ji X, Sun W, Yu Y, Liu Y, Huang J, Sarshar Z, Sain M (2021) High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta 222:121663. https://doi.org/10.1016/j.talanta.2020.121663

    Article  CAS  PubMed  Google Scholar 

  26. Hu Q, Sun H, Zhou X, Gong X, Xiao L, Liu L, Yang ZQ (2020) Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chem 325:126946. https://doi.org/10.1016/j.foodchem.2020.126946

    Article  CAS  PubMed  Google Scholar 

  27. Tang X, Yu H, Bui B, Wang L, Xing C, Wang S, Chen M, Hu Z, Chen W (2021) Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact Mater 6(6):1541–1554. https://doi.org/10.1016/j.bioactmat.2020.11.006

    Article  CAS  PubMed  Google Scholar 

  28. Ali HRH, Hassan AI, Hassan YF, El-Wekil MM (2021) Colorimetric and fluorometric nanoprobe for selective and sensitive recognition of hazardous colorant indigo carmine in beverages based on ion pairing with nitrogen doped carbon dots. Food Chem 349:129160. https://doi.org/10.1016/j.foodchem.2021.129160

    Article  CAS  Google Scholar 

  29. Liu Y, Wu P, Wu X, Ma C, Luo S, Xu M, Li W, Liu S (2020) Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta 210:120649. https://doi.org/10.1016/j.talanta.2019.120649

    Article  CAS  PubMed  Google Scholar 

  30. Zhou M, Zhou Z, Gong A, Zhang Y, Li Q (2015) Synthesis of highly photoluminescent carbon dots via citric acid and tris for iron (III) ions sensors and bioimaging. Talanta 143:107–113. https://doi.org/10.1016/j.talanta.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Cao L, Zan M, Hou Z, Ge M, Dong WF, Li L (2021) Iron and nitrogen-co-doped carbon quantum dots for the sensitive and selective detection of hematin and ferric ions and cell imaging. Analyst 146(15):4954–4963. https://doi.org/10.1039/d1an00828e

    Article  CAS  PubMed  Google Scholar 

  32. Miao S, Liang K, Zhu J, Yang B, Zhao D, Kong B (2020) Hetero-atom-doped carbon dots: doping strategies, properties and applications. Nano Today 33:100879. https://doi.org/10.1016/j.nantod.2020.100879

    Article  CAS  Google Scholar 

  33. Wang R, Wang X, Sun Y (2017) One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sens Actuators B Chem 241:73–79. https://doi.org/10.1016/j.snb.2016.10.043

    Article  CAS  Google Scholar 

  34. Zhang ML, Huang DK, Cao Z, Liu YQ, He JL, Xiong JF, Feng ZM, Yin YL (2015) Determination of trace nitrite in pickled food with a nano-composite electrode by electrodepositing ZnO and pt nanoparticles on MWCNTs substrate. LWT 64(2):663–670. https://doi.org/10.1021/acsfoodscitech.2c00278

    Article  CAS  Google Scholar 

  35. Wang HM, Feng XN, Xia Y, Yin XB (2022) Dual-ligand Terbium Metal–Organic Framework for visual ratiometric fluorescence sensing of Nitrites in Pickles. ACS Food Sci Technol 2(12):1911–1920. https://doi.org/10.1021/acsfoodscitech.2c00278

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China (LY22C200008) and the National Natural Science Foundation of China (31772085).

Author information

Authors and Affiliations

Authors

Contributions

Chendi Heng: Conceptualization, methodology, validation, analysis, investigation, data curation, writing—original draft preparation, and writing reviewing and editing. Bowen He: Data curation, validation, and investigation. Li Wang: Supervision, conceptualization, methodology, resources, validation, formal analysis, investigation, writing—original draft preparation, writing—reviewing and editing, project administration, and funding acquisition.

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Ethical Approval

Not applicable.

Competing of Interests

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, C., He, B. & Wang, L. A Dual-mode Ratiometric Fluorometric and Colorimetric Platform Based on Nitrogen-doped Carbon Dots and o-phenylenediamine for the Detection of Nitrite. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03432-8

Keywords

Navigation