Skip to main content
Log in

UV Light as an Efficient Tool for Reducing Surface Defects of ZnSe-MSA Quantum Dots

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Defects in ZnSe quantum dots are responsible for increasing the trap states, which can lead to the drastic reduction of their fluorescence output, being one of the major drawbacks of these materials. As surface atoms become more relevant in these nanoscale structures, energy traps due to surface vacancies, play a very definite role in the final emission quantum yield. In the present study, we report the use of photoactivation procedures to decrease surface defects of ZnSe QDs stabilized with mercaptosuccinic acid (MSA), in order to improve the radiative pathways. We applied the colloidal precipitation procedure in a hydrophilic medium and evaluated the role of Zn/Se molar ratios as well as the Zn2+ precursors (nitrate and chloride salts) on their optical properties. Best results (i.e. increment of 400% of the final fluorescence intensity) were obtained for nitrate precursor and a Zn/Se = 1.2 ratio. Thus, we suggest that the chloride ions may compete more efficiently than nitrate ions with MSA molecules decreasing the passivation capability of this molecule. The improvement in ZnSe QDs fluorescence can potentialize their use for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All relevant data are presented in the manuscript.

References

  1. Ebert P (1999) Nano-scale properties of defects in compound semiconductor surfaces. Surf Sci Rep 33:121–303. https://doi.org/10.1016/S0167-5729(98)00011-9

    Article  CAS  ADS  Google Scholar 

  2. Ebert P (2001) Atomic structure of point defects in compound semiconductor surfaces. Curr Opin Solid State Mater Sci 5:211–250. https://doi.org/10.1016/S1359-0286(00)00046-2

    Article  CAS  ADS  Google Scholar 

  3. Rogach AL, Gaponik N, Lupton JM, Bertoni C, Gallardo DE, Dunn S, Li Pira N, Paderi M, Repetto P, Romanov SG, O’Dwyer C, Sotomayor Torres CM (2008) Eychmüller. Light-emitting diodes with Semiconductor Nanocrystals. Angew Chem Int Ed 47:6538–6549. https://doi.org/10.1002/anie.200705109

    Article  CAS  Google Scholar 

  4. Lesiak A, Drzozga K, Cabaj J, Bański M, Malecha K, Podhorodecki A (2019) Optical sensors based on II-VI Quantum Dots. Nanomaterials 9:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pandey S, Bodas D (2020) High-quality quantum dots for multiplexed bioimaging: a critical review. Adv Colloid Interface Sci 278:102137. https://doi.org/10.1016/j.cis.2020.102137

    Article  CAS  PubMed  Google Scholar 

  6. Watkins GD (1996) Intrinsic defects in II–VI semiconductors. J Cryst Growth 159:338–344. https://doi.org/10.1016/0022-0248(95)00680-X

    Article  CAS  ADS  Google Scholar 

  7. Babentsov V, Sizov F (2008) Defects in quantum dots of IIB–VI semiconductors. Opto-Electron Rev 16:208–225. https://doi.org/10.2478/s11772-008-0025-0

    Article  CAS  ADS  Google Scholar 

  8. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 110:389–458. https://doi.org/10.1021/cr900137k

    Article  CAS  PubMed  Google Scholar 

  9. Sharma V, Mehata MS (2021) Synthesis of photoactivated highly fluorescent Mn2+-doped ZnSe quantum dots as effective lead sensor in drinking water. Mater Res Bull 134:111121. https://doi.org/10.1016/j.materresbull.2020.111121

    Article  CAS  Google Scholar 

  10. Carrillo-Carrión C, Cárdenas S, Simonet BM, Valcárcel M (2009) Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chem Commun 5214–5226. https://doi.org/10.1039/B904381K

  11. Wagner AM, Knipe JM, Orive G, Peppas NA (2019) Quantum dots in biomedical applications. Acta Biomater 94:44–63. https://doi.org/10.1016/j.actbio.2019.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Li H, Ma Y, Zhai T (2016) ZnSe nanostructures: synthesis, properties and applications. Prog Mater Sci 83:472–535. https://doi.org/10.1016/j.pmatsci.2016.07.005

    Article  CAS  Google Scholar 

  13. Mirnajafizadeh F, Ramsey D, McAlpine S, Wang F, Reece P, Stride JA (2016) Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity. Mater Sci Engineering: C 64:167–172. https://doi.org/10.1016/j.msec.2016.03.061

    Article  CAS  Google Scholar 

  14. Silva TG, Moura IMR, Filho PEC, Pereira MIA, Filho CAA, Pereira G, Pereira GAL, Fontes A, Santos BS (2016) ZnSe:Mn aqueous colloidal quantum dots for optical and biomedical applications. physica status solidi (c). n/a-n/a. https://doi.org/10.1002/pssc.201510300

  15. Moura IMR, Cabral Filho PE, Seabra MABL, Pereira G, Pereira GAL, Fontes A, Santos BS (2018) Highly fluorescent positively charged ZnSe quantum dots for bioimaging. J Lumin 201:284–289. https://doi.org/10.1016/j.jlumin.2018.04.053

    Article  CAS  Google Scholar 

  16. Kolackova M, Moulick A, Kopel P, Dvorak M, Adam V, Klejdus B, Huska D (2019) Antioxidant, gene expression and metabolomics fingerprint analysis of Arabidopsis thaliana treated by foliar spraying of ZnSe quantum dots and their growth inhibition of Agrobacterium tumefaciens. J Hazard Mater 365:932–941. https://doi.org/10.1016/j.jhazmat.2018.11.065

    Article  CAS  PubMed  Google Scholar 

  17. Khan ZU, Uchiyama MK, Khan LU, Ramos-Sanchez EM, Reis LC, Nakamura M, Goto H, De Souza AO, Araki K, Brito HF (2020) Gidlund. Orange-Emitting ZnSe:Mn2 + Quantum Dots as Nanoprobes for Macrophages. ACS Appl Nano Mater 3:10399–10410. https://doi.org/10.1021/acsanm.0c02242

    Article  CAS  Google Scholar 

  18. Liu L, Peng M, Xia H, Li N (2019) Key factors in the stability of doped ZnSe:Mn@MPA semiconductor nanocrystals. Chem Phys Lett 730:544–550. https://doi.org/10.1016/j.cplett.2019.06.049

    Article  CAS  ADS  Google Scholar 

  19. Xue X, Chen L, Zhao C, Chang L (2018) One-pot synthesis of highly luminescent and color-tunable water-soluble mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method. J Mater Sci: Mater Electron 29:9184–9192. https://doi.org/10.1007/s10854-018-8946-y

    Article  CAS  Google Scholar 

  20. Passos SGB, Kunst TH, Freitas DV, Navarro M (2020) Paired electrosynthesis of ZnSe/ZnS quantum dots and Cu2 + detection by fluorescence quenching. J Lumin 228:117611. https://doi.org/10.1016/j.jlumin.2020.117611

    Article  CAS  Google Scholar 

  21. Zhou Z-Q, Liao Y-P, Yang J, Huang S, Xiao Q, Yang L-Y, Liu Y (2020) Rapid ratiometric detection of Cd2 + based on the formation of ZnSe/CdS quantum dots. Spectrochim Acta Part A Mol Biomol Spectrosc 228:117795. https://doi.org/10.1016/j.saa.2019.117795

    Article  CAS  Google Scholar 

  22. Nishimura H, Maekawa T, Enomoto K, Shigekawa N, Takagi T, Sobue S, Kawai S, Kim D (2021) Water-soluble ZnSe/ZnS:Mn/ZnS quantum dots convert UV to visible light for improved Si solar cell efficiency. J Mater Chem C 9:693–701. https://doi.org/10.1039/D0TC04580B

    Article  CAS  Google Scholar 

  23. Ribeiro JFF, Pereira MIA, Assis LG, Cabral Filho PE, Santos BS, Pereira GAL, Chaves CR, Campos GS, Sardi SI, Pereira G (2019) Fontes. Quantum dots-based fluoroimmunoassay for anti-zika virus IgG antibodies detection. J Photochem Photobiol B 194:135–139. https://doi.org/10.1016/j.jphotobiol.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  24. Vo NT, Vu TB, Diep HTT, Le Khanh T, Van HT, Nguyen TB (2020) Q. Vinh Lam. Jurkat T Cell Detectability and Toxicity Evaluation of Low-Temperature Synthesized Cadmium Quantum Dots. Journal of Nanomaterials. 2020, 9346423. https://doi.org/10.1155/2020/9346423

  25. Lenz GR, Martell AE (1965) Metal chelates of mercaptosuccinic and α,α’-Dimercaptosuccinic acids. Inorg Chem 4:378–384. https://doi.org/10.1021/ic50025a027

    Article  CAS  Google Scholar 

  26. da Silva JJ, dos Santos WM, Fernandes RdS, Fontes A, Santos BS, Pereira CF, Krebs P, Mizaikoff B, Pereira G, Pereira GAL (2021) A facile route toward hydrophilic plasmonic copper selenide nanocrystals: new perspectives for SEIRA applications. New J Chem 45:15753–15760. https://doi.org/10.1039/D1NJ02672K

    Article  Google Scholar 

  27. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560. https://doi.org/10.1021/j100403a003

    Article  CAS  Google Scholar 

  28. Pacoste LC, Jijana AN, Feleni U, Iwuoha E (2020) Mercaptoalkanoic Acid-Induced Band Gap Attenuation of Copper Selenide Quantum dot. ChemistrySelect 5:4994–5005. https://doi.org/10.1002/slct.201903668

    Article  CAS  Google Scholar 

  29. Bányai LA, Koch SW (1993) Semiconductor Quantum Dots. World Scientific, Singapure

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the following Brazilian agencies: the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), and the Foundation for Science and Technology of Pernambuco (FACEPE). This work is also linked to the National Institute of Photonics (INFo). GP acknowledges financial support to CESAM by FCT/MCTES (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020), through national funds.

Funding

This work was supported by CNPq (project number 408103/2013-2) and National Institute of Photonics (INFo). GP acknowledges financial support to CESAM by FCT/MCTES (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020), through national funds.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material synthesis, characterizations, and analysis were performed by Jéssica D. S. Queiróz, Igor M. R. Moura, Goreti Pereira, and Beate S. Santos. The first draft of the manuscript was written by Beate S. Santos, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Goreti Pereira or Beate S. Santos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz, J.D.S., Moura, I.M., Pereira, G.A.L. et al. UV Light as an Efficient Tool for Reducing Surface Defects of ZnSe-MSA Quantum Dots. J Fluoresc 34, 667–673 (2024). https://doi.org/10.1007/s10895-023-03306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03306-z

Keywords

Navigation