Skip to main content
Log in

Development of an Endoplasmic Reticulum-targeting Fluorescent Probe for the Imaging of Superoxide Anion in Living Cells

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Superoxide anion (O2•−) is an important reactive oxygen species (ROS), and plays critical roles in biological systems. ER stress has close relation with many metabolic diseases, and could lead to the abnormal production of ROS including O2•−. Herein, we present an ER-targeting probe (ER-Tf) for the detection of O2•− in living cells. The probe ER-Tf used triflate as the response site for O2•−, and employed p-methylbenzenesulfonamide as ER-targeting moiety. In response to O2•−, the triflate of the probe ER-Tf converted to hydroxyl group, providing strong blue emission under the excitation of ultraviolet light. The probe ER-Tf exhibited high sensitivity and selectivity to O2•−. Bioimaging experiments showed that the probe ER-Tf can be applied to detect O2•− at ER, and also demonstrated that rotenone could increase the generation of O2•− in living cells, while the O2•− level at ER showed no remarkable change during ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. https://doi.org/10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  2. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Ajp Lung Cell Mol Physiol 279:1005–1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005

    Article  Google Scholar 

  3. Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharmaceut Des 10:1611–1626. https://doi.org/10.2174/1381612043384664

    Article  CAS  Google Scholar 

  4. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488. https://doi.org/10.1126/science.283.5407.1482

    Article  CAS  PubMed  Google Scholar 

  5. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361. https://doi.org/10.1038/nri3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prasad S, Gupta SC, Tyagi AK (2017) Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Canc Lett 387:95–105. https://doi.org/10.1016/j.canlet.2016.03.042

    Article  CAS  Google Scholar 

  7. Rahmani H, Ghavamipour F, Sajedi RH (2019) Bioluminescence detection of superoxide anion using aequorin. Anal Chem 91:12768–12774. https://doi.org/10.1021/acs.analchem.9b02293

    Article  CAS  PubMed  Google Scholar 

  8. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. https://doi.org/10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS (2014) Superoxide dismutases and superoxide reductases. Chem Rev 114:3854–3918. https://doi.org/10.1021/cr4005296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Z, Li Q, Sun Q, Chen H, Wang X, Li N, Yin M, Xie Y, Li H, Tang B (2012) Simultaneous determination of reactive oxygen and nitrogen species in mitochondrial compartments of apoptotic HepG2 cells and PC12 cells based on microchip electrophoresis-laser-induced fluorescence. Anal Chem 84:4687–4694. https://doi.org/10.1021/ac300255n

    Article  CAS  PubMed  Google Scholar 

  11. Qu LL, Li DW, Qin LX, Mu J, Fossey JS, Long YT (2013) Selective and sensitive detection of intracellular O2.- using Au NPs/cytochrome c as SERS nanosensors. Anal Chem 85:9549–9555. https://doi.org/10.1021/ac401644n

    Article  CAS  PubMed  Google Scholar 

  12. Pollard TD, Earnshaw WC, Johnson GT (2017) Cell Biology, 3rd edn. Elsevier, Netherlands

    Google Scholar 

  13. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191. https://doi.org/10.1038/nrm1052

    Article  CAS  PubMed  Google Scholar 

  14. Görlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8:1391–1418. https://doi.org/10.1089/ars.2006.8.1391

    Article  PubMed  Google Scholar 

  15. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894. https://doi.org/10.1038/nature02262

    Article  CAS  PubMed  Google Scholar 

  16. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460–3470. https://doi.org/10.1016/j.bbamcr.2013.06.028

    Article  CAS  PubMed  Google Scholar 

  17. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423. https://doi.org/10.1371/journal.pbio.0040423

  18. Bernales S, Schuck S, Walter P (2007) Selective autophagy of the endoplasmic reticulum. Autophagy 3:285–287. https://doi.org/10.4161/auto.3930

    Article  PubMed  Google Scholar 

  19. Chen XJ, West AC, Cropek DM, Banta S (2008) Detection of the superoxide radical anion using various alkanethiol monolayers and immobilized cytochrome c. Anal Chem 80:9622–9629. https://doi.org/10.1021/ac800796b

    Article  CAS  PubMed  Google Scholar 

  20. Abbas K, Hardy M, Poulhès F, Karoui H, Tordo P, Ouari O, Peyrot F (2014) Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps. Free Redical Bio Med 71:281–290. https://doi.org/10.1016/j.freeradbiomed.2014.03.019

    Article  CAS  Google Scholar 

  21. Yasui H, Sakurai H (2000) Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA. Biochem Biophys Res Commun 269:131–136. https://doi.org/10.1006/bbrc.2000.2254

    Article  CAS  PubMed  Google Scholar 

  22. Derkus B, Emregul E, Emregul KC (2015) Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode. Talanta 134:206–214. https://doi.org/10.1016/j.talanta.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  23. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  24. Chan J, Dodani SC, Chang CJ (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 4:973–984. https://doi.org/10.1038/nchem.1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Lu G, Tu Y, Pu S (2021) A turn-on fluorescent probe for the discrimination of Cys/Hcy and GSH with dual emission signals. J Fluoresc 31:599–607. https://doi.org/10.1007/s10895-021-02684-6

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40:4783–4804. https://doi.org/10.1039/C1CS15037E

    Article  CAS  PubMed  Google Scholar 

  27. Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W (2019) Chem Rev 119:10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145

    Article  CAS  PubMed  Google Scholar 

  28. Kim HM, Cho BR (2015) Chem Rev 115:5014–5055. https://doi.org/10.1021/cr5004425

    Article  CAS  PubMed  Google Scholar 

  29. Jiao X, Li Y, Niu J, Xie X, Wang X, Tang B (2018) Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Anal Chem 90:533–555. https://doi.org/10.1021/acs.analchem.7b04234

    Article  CAS  PubMed  Google Scholar 

  30. Xiao H, Liu X, Wu C, Wu Y, Li P, Guo X, Tang B (2017) A new endoplasmic reticulum-targeted two-photon fluorescent probe for imaging of superoxide anion in diabetic mice. Biosens Bioelectron 91:449–455. https://doi.org/10.1016/j.bios.2016.12.068

    Article  CAS  PubMed  Google Scholar 

  31. Zuo Q, Wu Q, Lv Y, Gong X, Cheng D (2020) Imaging of endoplasmic reticulum superoxide anion fluctuation in a liver injury model by a selective two-photon fluorescent probe. New J Chem 44:5457–5462. https://doi.org/10.1039/D0NJ00487A

    Article  CAS  Google Scholar 

  32. Lu Y, Wang R, Sun Y, Tian M, Dong B (2021) Endoplasmic reticulum-specific fluorescent probe for the two-photon imaging of endogenous superoxide anion (O2•–) in live cells and zebrafishes. Talanta 225:122020. https://doi.org/10.1016/j.talanta.2020.122020

  33. Kuwabara WMT, Zhang L, Schuiki I, Curi R, Volchuk A, Alba-Loureiro TC (2015) NADPH oxidase-dependent production of reactive oxygen species induces endoplasmatic reticulum stress in neutrophil-like HL60 cells. PLoS ONE 10:e0116410. https://doi.org/10.1371/journal.pone.0116410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by NSFC (51602127) and the Natural Science Foundation of Shandong Province (ZR2021MB022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by H. Wei, Y. Wang, Q. Chen, Y. Sun, T. Yue and B. Dong. The first draft of the manuscript was written by H. Wei, T. Yue and B. Dong. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tao Yue or Baoli Dong.

Ethics declarations

Ethical Approval

Not applicable.

Conflicts of Interest

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1334 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Wang, Y., Chen, Q. et al. Development of an Endoplasmic Reticulum-targeting Fluorescent Probe for the Imaging of Superoxide Anion in Living Cells. J Fluoresc 33, 509–515 (2023). https://doi.org/10.1007/s10895-022-03079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03079-x

Keywords

Navigation