Skip to main content
Log in

Fluorescence Variation in Selective Sensing of Hg2+and Cu2+ Ions By Coumarin-xanthene Fused Optical Probe

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescent moieties coumarin and xanthene (R6GCP) combined in a single molecule was designed and synthesized. The colorimetric and fluorescent variation of the probe towards the copper and mercury ions sensing is examined. With the added copper/mercury ions to the solution of R6GCP in DMF:H2O (2:8, v/v), the probe showed deep red color from yellow color. The probe showed turn-off and turn-on fluorescence for copper and mercury ion respectively. In the presence of other competing metal ions, the probe showed better sensitivity towards copper and mercury ions. The probe’s detection limit found to be 5.29 × 10–6 M and 1.24 × 10–5 M for Cu2+ and Hg2+ ion respectively by the UV–visible spectral measurement. Fluorescence measurement, the detection limit for the Cu2+ and Hg2+ ions detection by this probe is 1.91 × 10–7 M, and 1.32 × 10–8 M respectively. 1:1 binding stoichiometry was confirmed between the probe and Cu2+/Hg2+ ions from jobs plot by UV–visible spectral technique. Moreover, R6GCP combined filter paper were prepared. These test paper containing probe could detect Cu2+/Hg2+ ions in real-time with a spontaneous color change.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8.
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

Availability of Data and Material

All data available.

Code Availability

Not applicable.

References

  1. Garcia-Beltran O, Mena N, Friedrich LC, Netto-Ferreira JC, Vargas V, Quina FH, Nunez MT, Cassels BK (2012) Design and synthesis of a new coumarin-based ‘turn-on’ fluorescent probe selective for Cu+2. Tetrahedron Lett 53(39):5280–5283. https://doi.org/10.1016/j.tetlet.2012.07.082

    Article  CAS  Google Scholar 

  2. Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J Am Chem Soc 119(31):7386–7387. https://doi.org/10.1021/ja971221g

    Article  CAS  Google Scholar 

  3. Angupillai S, Hwang JY, Lee JY, Rao BA, Son YA (2015) Efficient rhodamine-thiosemicarbazide-based colorimetric/fluorescent ‘turn-on’ chemodosimeters for the detection of Hg2+ in aqueous samples. Sens Actuators B 214(31):101–110. https://doi.org/10.1016/j.snb.2015.02.126

    Article  CAS  Google Scholar 

  4. Sanchez AJ, Farfan N, Santillan R (2013) A reversible fluorescent–colorimetric Schiff base sensor for Hg2+ ion. Tetrahedron Lett 54(39):5279–5283. https://doi.org/10.1016/j.tetlet.2013.07.072

    Article  CAS  Google Scholar 

  5. Yuan Y, Jiang S, Miao Q, Zhang J, Wang M, An L, Cao Q, Guan Y, Zhang Q, Liang G (2014) Fluorescent switch for fast and selective detection of mercury(II) ions in vitro and in living cells and a simple device for its removal. Talanta 125(1):204–209. https://doi.org/10.1016/j.talanta.2014.02.063

    Article  CAS  PubMed  Google Scholar 

  6. Yari A, Papi F (2011) Ultra trace mercury (II) detection by a highly selective new optical sensor. Sens Actuators B 160(1):698–704. https://doi.org/10.1016/j.snb.2011.08.051

    Article  CAS  Google Scholar 

  7. Li G, Gao G, Cheng J, Chen X, Zhao Y, Ye Y (2016) Two new reversible naphthalimide-based fluorescent chemosensors for Hg2+. Luminescence 31:992–996. https://doi.org/10.1002/bio.3063

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Q, Wu Z, Huang X, Zhong F, Cai Q (2015) A highly selective fluorescent probe for in vitro and in vivo detection of Hg2+. Analyst 140:6720–6726. https://doi.org/10.1039/C5AN00452G

    Article  CAS  PubMed  Google Scholar 

  9. Ni J, Li B, Zhang L, Zhao H, Jiang H (2015) A fluorescence turn-on probe based on rhodamine derivative and its functionalized silica material for Hg2+-selective detection. Sens Actuators B 215:174–180. https://doi.org/10.1016/j.snb.2015.03.057

    Article  CAS  Google Scholar 

  10. Wang M, Wen J, Qin Z, Wang H (2015) A new coumarin–rhodamine FRET system as an efficient ratiometric fluorescent probe for Hg2+ in aqueous solution and in living cells. Dyes Pigm 120:208–212. https://doi.org/10.1016/j.dyepig.2015.04.013

    Article  CAS  Google Scholar 

  11. Yang YK, Yook KJ, Tae J (2005) A Rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127(48):16760–16761. https://doi.org/10.1021/ja054855t

    Article  CAS  PubMed  Google Scholar 

  12. Huang K, Yue Y, Jiao X, Liu C, Wang Q, He S, Zhao L, Zeng X (2017) Fluorescence regulation of 4-aminobenzofluoran and its applications for Cu2+-selective fluorescent probe and bioimaging. Dyes Pigm 143:379–386. https://doi.org/10.1016/j.dyepig.2017.04.064

    Article  CAS  Google Scholar 

  13. Maity D, Govindaraju T (2011) Highly Selective Visible and Near-IR Sensing of Cu2+ Based on Thiourea-Salicylaldehyde Coordination in Aqueous Media. Chem Eur J 17:1410–1414. https://doi.org/10.1002/chem.201002570

    Article  CAS  PubMed  Google Scholar 

  14. Liu C, Jiao X, He S, Zhao L, Zeng X (2017) A highly selective and sensitive fluorescent probe for Cu2+ based on a novel naphthalimide–rhodamine platform and its application in live cell imaging. Org Biomol Chem 15:3947–3954. https://doi.org/10.1039/C7OB00538E

    Article  CAS  PubMed  Google Scholar 

  15. Yamini Y, Alizadeh N, Shamsipur M (1997) Solid phase extraction and determination of ultra trace amounts of mercury(II) using octadecyl silica membrane disks modified by hexathia-18-crown-6-tetraone and cold vapour atomic absorption spectrometry. Anal Chim Acta 355(1):69–74. https://doi.org/10.1016/S0003-2670(97)81613-3

    Article  CAS  Google Scholar 

  16. Thomas F, Maslon A, Bottero JY, Rouiller J, Montlgny F, Genévrlere F (1993) Aluminum(III) Speciation with Hydroxy Carboxylic Acids. 27AI NMR Study. Environ Sci Technol 27(12):2511–2516

    Article  CAS  Google Scholar 

  17. Zheng F, Hu B (2008) Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 63(1):9–18. https://doi.org/10.1016/j.sab.2007.10.034

    Article  CAS  Google Scholar 

  18. Bobrowski A, Nowak K, Zarebski J (2005) Application of a bismuth film electrode to the Voltammetric determination of trace iron using a Fe(III)-TEA-Br O3- catalytic system. Anal Bioanal Chem 382(7):1691–1697. https://doi.org/10.1007/s00216-005-3313-2

    Article  CAS  PubMed  Google Scholar 

  19. Harrington CF, Merson SA, D’Silva TMD (2004) Method to reduce the memory effect of mercury in the analysis of fish tissue using inductively coupled plasma mass spectrometry. Anal Chim Acta 505(2):247–254. https://doi.org/10.1016/j.aca.2003.10.046

    Article  CAS  Google Scholar 

  20. Ferreira SLC, Queiroz AS, Fernandes MS, dos Santos HC (2002) Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry. Spectrochim Acta B 57(12):1939–1950. https://doi.org/10.1016/S0584-8547(02)00160-X

    Article  Google Scholar 

  21. Zioła-Frankowska A, Frankowski M, Siepak J (2009) Development of a new analytical method for online simultaneous qualitative determination of aluminium (free aluminium ion, aluminium-fluoride complexes) by HPLC-FAAS. Talanta 78(2):623–630. https://doi.org/10.1016/j.talanta.2008.12.028

    Article  CAS  PubMed  Google Scholar 

  22. Bayindir S (2019) A simple rhodanine-based fluorescent sensor for mercury and copper: The recognition of Hg2+ in aqueous solution, and Hg2+/Cu2+ in organic solvent. J Photochem Photobiol A 372:235–244. https://doi.org/10.1016/j.jphotochem.2018.12.021

    Article  CAS  Google Scholar 

  23. Mohanasundaram D, Bhaskar R, Sankarganesh M, Nehru K, Kumar GGV, Rajesh J (2022) A simple pyridine based fluorescent chemosensor for selective detection of copper ion. Spectrochim Acta A Mol Biomol Spectrosc 265:120395. https://doi.org/10.1016/j.saa.2021.120395

    Article  CAS  PubMed  Google Scholar 

  24. Isaad J, Achari AE (2022) Water-soluble coumarin based sequential colorimetric and fluorescence on-off chemosensor for copper(II) and cyanide ions in water. Opt Mater 127:112275. https://doi.org/10.1016/j.optmat.2022.112275

    Article  CAS  Google Scholar 

  25. Sasan S, Chopra T, Gupta A, Tsering D, Kapoor KK, Parkesh R (2022) Fluorescence “Turn-Off” and Colorimetric Sensor for Fe2+, Fe3+, and Cu2+ Ions Based on a 2,5,7-Triarylimidazopyridine Scaffold. ACS Omega 7(13):11114–11125. https://doi.org/10.1021/acsomega.1c07193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu H, Fan J, Wang B, Peng X (2015) Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions. Chem Soc Rev 44:4337–4366. https://doi.org/10.1039/C4CS00285G

    Article  CAS  PubMed  Google Scholar 

  27. Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44:4185–4191. https://doi.org/10.1039/C4CS00280F

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113(1):192–270. https://doi.org/10.1021/cr2004103

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112(3):1910–1956. https://doi.org/10.1021/cr200201z

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Shiraishi Y, Hirai T (2007) Cu(II)-selective green fluorescence of a rhodamine−diacetic acid conjugate. Org Lett 9(24):5039–5042. https://doi.org/10.1021/ol7022714

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Beltran O, Cassels BK, Perez C, Mena N, Nunez MT, Martinez NP, Pavez P, Aliaga ME (2014) Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging. Sensors 14(1):1358–1371. https://doi.org/10.3390/s140101358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeh JT, Chen WC, Liu SR, Wu SP (2014) A coumarin-based sensitive and selective fluorescent sensor for copper(II) ions. New J Chem 38:4434–4439. https://doi.org/10.1039/C4NJ00695J

    Article  CAS  Google Scholar 

  33. Huang L, Cheng J, Xie K, Xi P, Hou F, Li Z, Xie G, Shi Y, Liu H, Bai D, Zeng Z (2011) Cu2+-selective fluorescent chemosensor based on coumarin and its application in bioimaging. Dalton Trans 40:10815–10817. https://doi.org/10.1039/C1DT11123J

    Article  CAS  PubMed  Google Scholar 

  34. Kumar M, Kumar N, Bhalla V, Sharma PR, Kaur T (2012) Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org Lett 14(1):406–409. https://doi.org/10.1021/ol203186b

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Jia J, Ma H, Wang S, Wang X (2009) Characterization of rhodamine B hydroxylamide as a highly selective and sensitive fluorescence probe for copper(II). Anal Chim Acta 632(1):9–14. https://doi.org/10.1016/j.aca.2007.08.025

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Chang HQ, Wu WN, Peng WB, Yan YF, He CM, Chen TT, Zhao XL, Xu ZQ (2016) Rhodamine 6G hydrazone bearing pyrrole unit: Ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches. Sens Actuators B Chem 228:395–400. https://doi.org/10.1016/j.snb.2016.01.052

    Article  CAS  Google Scholar 

  37. Wang E, Zhou Y, Huang Q, Pang L, Qiao H, Yu F, Gao B, Zhang J, Min Y, Ma T (2016) 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu2+. Spectrochim Acta A Mol Biomol Spectrosc 152:327–335. https://doi.org/10.1016/j.saa.2015.07.090

    Article  CAS  PubMed  Google Scholar 

  38. Yu M, Yuan R, Shi C, Zhou W, Wei L, Li Z (2013) 1,8-Naphthyridine and 8-hydroxyquinoline modified Rhodamine B derivatives: “Turn-on” fluorescent and colorimetric sensors for Al3+ and Cu2+. Dyes Pigm 99(3):887–894. https://doi.org/10.1016/j.dyepig.2013.07.030

    Article  CAS  Google Scholar 

  39. Tian MZ, Hu MM, Fan JL, Peng XJ, Wang JY, Sun SG, Zhang R (2013) Rhodamine-based ‘turn-on’ fluorescent probe for Cu2+ and its fluorescence imaging in living cells. Bioorg Med Chem Lett 23(10):2916–2919. https://doi.org/10.1016/j.bmcl.2013.03.052

    Article  CAS  PubMed  Google Scholar 

  40. Huang L, Chen F, Xi P, Xie G, Li Z, Shi Y, Xu M, Liu H, Ma Z, Bai D, Zeng Z (2011) A turn-on fluorescent chemosensor for Cu2+ in aqueous media and its application to bioimaging. Dyes Pigm 90(3):265–268. https://doi.org/10.1016/j.dyepig.2011.01.003

    Article  CAS  Google Scholar 

  41. Tang L, Li F, Liu NR (2011) Single sensor for two metal ions: Colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+. Spectrochim Acta A Mol Biomol Spectrosc 78(3):1168–1172. https://doi.org/10.1016/j.saa.2010.12.072

    Article  CAS  PubMed  Google Scholar 

  42. Huang L, Hou FP, Xi P, Bai D, Xu M, Li Z, Xie G, Shi Y, Liu H, Zeng Z (2011) A rhodamine-based “turn-on” fluorescent chemodosimeter for Cu2+ and its application in living cell imaging. J Inorg Biochem 105(6):800–805. https://doi.org/10.1016/j.jinorgbio.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  43. Tang J, Ma S, Zhang D, Liu Y, Zhao Y, Ye Y (2016) Highly sensitive and fast responsive ratiometric fluorescent probe for Cu2+ based on a naphthalimide-rhodamine dyad and its application in living cell imaging. Sens Actuators B 236:109–115. https://doi.org/10.1016/j.snb.2016.05.144

    Article  CAS  Google Scholar 

  44. Zhou Y, Wang F, Kim Y, Kim SJ, Yoon J (2009) Cu2+-selective ratiometric and “off-on” sensor based on the rhodamine derivative bearing pyrene group. Org Lett 11(19):4442–4445. https://doi.org/10.1021/ol901804n

    Article  CAS  PubMed  Google Scholar 

  45. Xu ZH, Wang HW, Hou XF, Xu WL, Xiang TC, Wu CZ (2014) A novel ratiometric colorimetric and NIR fluorescent probe for detecting Cu2+ with high selectivity and sensitivity based on rhodamine-appended cyanine. Sens Actuators B 201:469–474. https://doi.org/10.1016/j.snb.2014.05.026

    Article  CAS  Google Scholar 

  46. Muthuraj B, Deshmukh R, Trivedi V, Iyer PK (2014) Highly selective probe detects Cu2+ and endogenous NO gas in living cell. ACS Appl Mater Interfaces 6(9):6562–6569. https://doi.org/10.1021/am501476w

    Article  CAS  PubMed  Google Scholar 

  47. Kar C, Adhikari MD, Ramesh A, Das G (2013) NIR-and FRET-based sensing of Cu2+ and S2- in physiological conditions and in live cells. Inorg Chem 52(2):743–752. https://doi.org/10.1021/ic301872q

    Article  CAS  PubMed  Google Scholar 

  48. Yuan L, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46(7):1462–1473. https://doi.org/10.1021/ar300273v

    Article  CAS  PubMed  Google Scholar 

  49. He G, Zhang X, He C, Zhao X, Duan C (2010) Ratiometric fluorescence chemosensors for copper(II) and mercury(II) based on FRET systems. Tetrahedron 66(51):9762–9768. https://doi.org/10.1016/j.tet.2010.09.043

    Article  CAS  Google Scholar 

  50. Lopez MT, Munoz A, Ibeas S, Serna F, Garcia FC, Garcia JM (2016) Colorimetric detection and determination of Fe(III), Co(II), Cu(II) and Sn(II) in aqueous media by acrylic polymers with pendant terpyridine motifs. Sens Actuators B 226:118–126. https://doi.org/10.1016/j.snb.2015.11.116

    Article  CAS  Google Scholar 

  51. Heo G, Manivannan R, Kim H, Kim MJ, Min KS, Son YA (2019) Developing an RGB - Arduino device for the multi-color recognition, detection and determination of Fe(III), Co(II), Hg(II) and Sn(II) in aqueous media by a terpyridine moiety. Sens Actuators, B 297:126723. https://doi.org/10.1016/j.snb.2019.126723

    Article  CAS  Google Scholar 

  52. Georgiev NI, Dimitrova MD, Asiri AM, Alamry KA, Bojinov VB (2015) Synthesis, sensor activity and logic behaviour of a novel bichromophoric system based on rhodamine 6G and 1,8-naphthalimide. Dyes Pigm 115:172–180. https://doi.org/10.1016/j.dyepig.2015.01.001

    Article  CAS  Google Scholar 

  53. Zeng X, Dong L, Wu C, Mu L, Xue SF, Tao Z (2009) Highly sensitive chemosensor for Cu(II) and Hg(II) based on the tripodal rhodamine receptor. Sens Actuators B 141(2):506–510. https://doi.org/10.1016/j.snb.2009.07.013

    Article  CAS  Google Scholar 

  54. Wang L, Yan J, Qin W, Liu W, Wang R (2012) A new rhodamine-based single molecule multianalyte (Cu2+, Hg2+) sensor and its application in the biological system. Dyes Pigm 92(3):1083–1090. https://doi.org/10.1016/j.dyepig.2011.07.010

    Article  CAS  Google Scholar 

  55. Jiao Y, Zhou L, He H, Yin J, Duan C (2017) A new fluorescent chemosensor for recognition of Hg2+ ions based on a coumarin derivative. Talanta 162:403–407. https://doi.org/10.1016/j.talanta.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  56. Guha S, Lohar S, Hauli I, Mukhopadhyay SK, Das D (2011) Vanillin-coumarin hybrid molecule as an efficient fluorescent probe for trace level determination of Hg(II) and its application in cell imaging. Talanta 85(3):1658–1664. https://doi.org/10.1016/j.talanta.2011.06.073

    Article  CAS  PubMed  Google Scholar 

  57. Chang HQ, Zhao XL, Wu WN, Jia L, Wang Y (2017) A highly sensitive on-off fluorescent chemosensor for Cu2+ based on coumarin. J Lumin 182:268–273. https://doi.org/10.1016/j.jlumin.2016.10.041

    Article  CAS  Google Scholar 

  58. Xu WJ, Qi DQ, You JZ, Hu FF, Bian JY, Yang CX, Huang J (2015) Coumarin-based ‘turn-off’ fluorescent chemosensor with high selectivity for Cu2+ in aqueous solution. J Mol Struct 1091:133–137. https://doi.org/10.1016/j.molstruc.2015.02.083

    Article  CAS  Google Scholar 

  59. Yin GX, Niu TT, Gan YB, Yu T, Yin P, Chen HM, Zhang Y, Li HT, Yao SZ (2018) A multi-signal fluorescent probe with multiple binding sites for simultaneous sensing of cysteine, homocysteine, and glutathione. Angew Chem Int Ed 57:4991–4994. https://doi.org/10.1002/anie.201800485

    Article  CAS  Google Scholar 

  60. Yu C, Chen L, Zhang J, Li J, Liu P, Wang W, Yan B (2011) “Off-On” based fluorescent chemosensor for Cu2+ in aqueous media and living Cells. Talanta 85(3):1627–1633. https://doi.org/10.1016/j.talanta.2011.06.057

    Article  CAS  PubMed  Google Scholar 

  61. Namita K, Nilanjan D, Santanu B (2014) Remarkable role of positional isomers in the design of sensors for the ratiometric detection of copper and mercury ions in water. RSC Adv 4(9):4230–4238. https://doi.org/10.1039/C3RA45054F

    Article  Google Scholar 

  62. Moorthy S, Sandhya M, Sanjiv KM, Suresh E, Amal KM, Anupama S, Amitava D (2009) Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism. Org Lett 11(13):2740–2743. https://doi.org/10.1021/ol900810q

    Article  CAS  Google Scholar 

  63. Hong M, Lu X, Chen Y, Xu D (2016) A novel rhodamine-based colorimetric and fluorescent sensor for Hg2+ in water matrix and living cell. Sens Actuators B 232:28–36. https://doi.org/10.1016/j.snb.2016.03.125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Acharya Nagarjuna University for providing lab facilities to conduct research work.

Author information

Authors and Affiliations

Authors

Contributions

Mahesh Gosi: Methodology, Investigation, Formal analysis, Visualization, Writing – original draft. Anitha C. Kumar: Investigation, Visualization. Yeturu Sunandamma: Conceptualization, Methodology, Investigation, Formal analysis, Writing—review & editing, Supervision.

Corresponding author

Correspondence to Yeturu Sunandamma.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Informed consent obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A coumarin-xanthene based optical probe to senses copper and mercury ion.

• The probe showed colorimetric response and fluorescence turn-on for Hg2+ and turn-off for Cu2+ ion.

• The test strip prepared can detect very effectively the Cu2+ and Hg2+ ion in aqueous solution.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1590 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosi, M., Kumar, A.C. & Sunandamma, Y. Fluorescence Variation in Selective Sensing of Hg2+and Cu2+ Ions By Coumarin-xanthene Fused Optical Probe. J Fluoresc 32, 2379–2393 (2022). https://doi.org/10.1007/s10895-022-03030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03030-0

Keywords

Navigation