Skip to main content

Advertisement

Log in

Synthesis, Characterization, Properties, and Novel Applications of Fluorescent Nanodiamonds

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the last few years, fluorescent nanodiamonds (FNDs)  have been developed significantly as a new member in the nanocarbon family. The surface of FNDs is embedded with some crystallographic defects containing color centres which surmount the properties of other fluorochromes including up conversion and down conversion nanoparticles, quantum dots, nano tubes, fullerenes, organic dyes, silica etc. Some of the intriguing properties like inevitable photostability, inherent bio-compatibility, outstanding optical and robust mechanical properties, excellent magnetic field, and electric field sensing potentiality make FNDs appealing to some benevolent applications in numerous fields like bio-imaging, delivering drugs, fighting cancer, spin electronics, imaging of magnetic structure at nanoscale and as promising nanometric temperature sensor. The structure of FNDs has certain point defects on the surface among which negatively charged nitrogen vacancy centre (NV) is the most investigated color centre. The production of NV fluorescence nanodiamonds is the most challenging task as substitution of carbon atoms is required to create vacancies by causing irradiation from an electron beam which is followed by high temperature annealing. Thus, this review points out the relative advantages of FNDs containing negatively charged nitrogen vacancy centres produced from HPHT method or CVD method with those nanodiamonds produced through detonation process or pulsed laser ablation (PLA) method. The steps involved in the fabrication of FNDs are described along with the major challenges and struggles underwent during the process in this review. This review also summarizes the recent developments made in the functionalization and applications predominantly made in the field of biological science and it is understood that depending on the defect color centres they can exhibit different emitted wavelengths ranging from UV–visible to near infrared with broad or narrow bandwidths. This review also highlights some of the fluorescent NDs that emit stable and strong red or green photoluminescence from the defect centers of NV which are implanted in the crystal lattice. This critical and extensive review will be useful for the further progress in this futuristic field of FNDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2018, Applied Physics A

Fig. 3

Copyright 2019, Carbon

Fig. 4

Copyright 2017, Current Opinion in Solid State & Materials Science

Fig. 5

Copyright 2019, Diamond and Related Materials

Fig. 6

Copyright 2020, Applied Science

Fig. 7

Copyright 2013, New Journal of Physics. (b) Spectra of SiV emitter which is temperature dependent. The spectra are measured at two temperatures: 290 K which is indicated by red triangles and 30 K which is indicated by blue squares. Inset depicts the function of the emitter g2. Regenerated from [129], Copyright 2011, New Journal of Physics

Fig. 8

Copyright 2011, Nature Nanotechnology

Fig. 9

Copyright 2011, The Journal of Physical Chemistry C

Fig. 10

Copyright 2019, Journal of Vacuum Science & Technology B

Fig. 11

Copyright 2019, Journal of Vacuum Science & Technology B

Fig. 12

Copyright 2017, Proceedings of SPIE

Fig. 13

Copyright 2017, ACS Sustainable Chemical Engineering

Fig. 14

Copyright 2011, Journal of Vacuum Science & Technology B

Fig. 15

Copyright 2013, Nature Nanotechnology

Fig. 16

Copyright 2011, Angewandte Chemie

Similar content being viewed by others

References

  1. Alkahtani MH, Alghannam F, Jiang L, Almethen A, Rampersaud AA, Brick R, Gomes CL, Scully MO, Hemmer PR (2018) Fluorescent nanodiamonds: past, present and future. Nanophotonics 7:1423–1453

    Article  CAS  Google Scholar 

  2. Gao L, Shao L, Chen BC, Betzig E (2014) 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat Protoc 9:1083–1101

    Article  CAS  PubMed  Google Scholar 

  3. Gu L, Hall DJ, Qin Z, Anglin E, Joo J, Mooney DJ, Howell SB, Sailor MJ (2013) In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun 4:2326

    Article  PubMed  CAS  Google Scholar 

  4. Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC (2014) The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20:103–111

    Article  CAS  PubMed  Google Scholar 

  5. Keller PJ (2013) Imaging Morphogenesis: Technological Advances and Biological Insights. Science 340:1234168–1234168

    Article  PubMed  CAS  Google Scholar 

  6. Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK (2014) Tracking single molecules at work in living cells. Nat Chem Biol 10:524–532

    Article  CAS  PubMed  Google Scholar 

  7. Hsiao WW-W, Hui YY, Tsai PC, Chang HC (2016) Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature. Acc Chem Res 49:400–407

    Article  CAS  PubMed  Google Scholar 

  8. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  9. Yan JL, Estevez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2:44–50

    Article  Google Scholar 

  10. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    Article  CAS  PubMed  Google Scholar 

  11. Yu J, Xiao J, Ren XJ, Lao KQ, Xie XS (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311:1600–1603

    Article  CAS  PubMed  Google Scholar 

  12. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent novel-metal quantum dots. Annu Rev Phys Chem 58:409–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong S, Grinolds M, Pham L, Le Sage D, Luan L, Walsworth R, Yacoby A (2013) Nanoscale magnetometry with NV centers in diamond. MRS Bull 38:155–161

    Article  CAS  Google Scholar 

  14. Hui YY, Cheng CA, Chen OY, Chang HC (2016) Bioimaging and quantum sensing using NV centres in diamond nanoparticles. Carbon Nanostruct 109–137

  15. Santori C, Barclay PE, Fu KM, Beausoleil RG, Spillane S, Fisch M (2010) Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond. Nanotechnology 21:274008

    Article  CAS  PubMed  Google Scholar 

  16. Fuchs GD, Burkard G, Klimov PV, Awschalom DD (2011) A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nat Phys 7:789–793

    Article  CAS  Google Scholar 

  17. Childress L, Hanson R (2013) Diamond NV centers for quantum computing and quantum networks. MRS Bull 38:134–138

    Article  CAS  Google Scholar 

  18. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23

    Article  PubMed  CAS  Google Scholar 

  19. Shenderova OA, Shames AI, Nunn NA, Torelli MD, Vlasov I, Zaitsev A (2019) Review Article: Synthesis, properties, and applications of fluorescent diamond particles. J Vac Sci Technol B 37:030802

    Article  CAS  Google Scholar 

  20. Schirhagl R, Chang K, Loretz M, Degen CL (2014) Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem 65:83–105

    Article  CAS  PubMed  Google Scholar 

  21. Aharonovich I, Castelletto S, Simpson DA, Su CH, Greentree AD, Prawer S (2011) Diamond-based single-photon emitters. Rep Prog Phys 74:076501

    Article  CAS  Google Scholar 

  22. Basso L, Cazzanelli M, Orlandi M, Miotello A (2020) Nanodiamonds: Synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space. Appl Sci 10:4094

    Article  CAS  Google Scholar 

  23. Maze JR, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin MD (2011) Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J Phys 13:025025

    Article  CAS  Google Scholar 

  24. Boruah A, Saikia M, Das T, Goswamee RL, Saikia BK (2020) Blue-emitting fluorescent carbon quantum dots from waste biomass sources and their application in fluoride ion detection in water. J Photochem Photobiol B 209:111940

    Article  CAS  PubMed  Google Scholar 

  25. Reineck P, Francis A, Orth A, Lau DWM, Nixon-Luke RDV, Rastogi ID, Razali WAW, Cordina NM, Parker LM, Sreenivasan VKA, Brown LJ, Gibson BC (2016) Brightness and photostability of emerging red and near-IR fluorescent nanomaterials for bioimaging. Adv Opt Mater 4:1549

    Article  CAS  Google Scholar 

  26. Boudou JP, Tisler J, Reuter R, Thorel A, Curmi PA, Jelezko F, Wrachtrup J (2013) Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam Relat Mater 37:80–86

    Article  CAS  Google Scholar 

  27. Dolmatov VY, Ozerin AN, Kulakova II, Bochechka OO, Lapchuk NM, Myllymäki V, Vehanen A (2020) Detonation nanodiamonds: new aspects in the theory and practice of synthesis, properties and applications. Russ Chem Rev 89:1428

    Article  CAS  Google Scholar 

  28. Mandal M, Haso F, Liu TY, Fei K, Landskron K (2014) Size tunable synthesis of solution processable diamond nanocrystals. Chem Commun 50:11307–11310

    Article  CAS  Google Scholar 

  29. Park JW, Kim KS, Hwang NM (2016) Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon 106:289–294

    Article  CAS  Google Scholar 

  30. Neu E, Arend C, Gross E, Guldner F, Hepp C, Steinmetz D, Zscherpel E, Ghodbane S, Sternschulte H, Steinmuller-Nethl D, Liang Y, Krueger A, Becher C (2011) Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. C Appl Phys Lett 98:243107

    Article  CAS  Google Scholar 

  31. Dolmatov VY (2007) Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ Chem Rev 76:339–360

    Article  CAS  Google Scholar 

  32. Dobrinets A, Vins VG, Zaitsev AM (2013) HPHT-Treated Diamonds. Diamonds Forever, Springer, Berlin, p 99

  33. https://www.lumeradiamonds.com/diamond-education/diamond-fluorescence

  34. Das T, Saikia BK (2017) Nanodiamonds produced from low-grade Indian coals. ACS Sustainable Chem Eng 5:9619–9624

    Article  CAS  Google Scholar 

  35. Islam N, Dihingia A, Manna P, Das T, Kalita J, Dekaboruah HP, Saikia BK (2019) Environmental and toxicological assessment of nanodiamond-like materials derived from carbonaceous aerosols. Sci Total Environ 679:209–220

    Article  CAS  PubMed  Google Scholar 

  36. Wang ZX, Pan QY, Hu JG, Yong ZZ, Hu YQ, Zhu ZY (2007) Synthesis of diamond nanocrystals by double ions (40Ar+, C2H6+) bombardment. Wuli Xuebao 56(8):4829–4833

    CAS  Google Scholar 

  37. Basavalingu B, Byrappa K, Madhusudan P (2007) Hydrothermal synthesis of nanosized crystals of diamond under sub-natural conditions. Geol Soc India 69:665–670

    CAS  Google Scholar 

  38. Korablov S, Yokosawa K, Korablov D, Tohji K, Yamasaki N (2006) Hydrothermal formation of diamond from chlorinated organic compounds. Mater Lett 60:3041–3044

    Article  CAS  Google Scholar 

  39. Plakhotnik T, Doherty MW, Cole JH, Chapman R, Manson NB (2014) All-optical thermometry and thermal properties of the optically detected spin resonances of the NV–center in nanodiamond. Nano Lett 14:4989–4996

    Article  CAS  PubMed  Google Scholar 

  40. Yang W, Auciello O, Butler JE, Cei W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN, Smith LM, Hamers RJ (2002) Smith LM. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1:253–257

    Article  CAS  PubMed  Google Scholar 

  41. Huang H, Pierstorff E, Osawa E, Ho D (2007) Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 7:3305–3314

    Article  CAS  PubMed  Google Scholar 

  42. Mishra R, Chhalodia AK, Tiwari SK (2018) Recent progress in nanodiamonds: Synthesis, properties and their potential applications. Veruscript Funct Nanomater 2 (25)

  43. Cazzanelli M, Basso L, Cestari C, Bazzanella N, Moser E, Orlandi M, Piccoli A, Miotello A (2021) Fluorescent Nanodiamonds Synthesized in One-Step by Pulsed Laser Ablation of Graphite in Liquid-Nitrogen. C 7: 49

  44. Hao J, Pan L, Gao S, Fan H, Gao B (2019) Production of fluorescent nano-diamonds through femtosecond pulsed laser ablation. Opt Mater Express 9:4734–4741

    Article  CAS  Google Scholar 

  45. Shenderova O, Nunn N, Oeckinghaus T, Torelli M, McGuire G, Smith K, Danilov E, Reuter R, Wrachtrup J, Shames A, Filonova D, Kinev A (2017) Commercial quantities of ultrasmall fluorescent nanodiamonds containing color centers. SPIE Procedings 10118:1011803

    Article  Google Scholar 

  46. Gracio JJ, Fan QH, Madaleno JC (2010) Diamond growth by chemical vapour deposition. J Phys D Appl Phys 43:374017

    Article  CAS  Google Scholar 

  47. Lueking AD, Guitierrez HR, Fonseca DA, Narayanan DV, Essendelft Jain P, Clifford CEB (2006) Combined Hydrogen Production and Storage with Subsequent Carbon Crystallization. Am Chem Soc 128:7758–7760

    Article  CAS  Google Scholar 

  48. Pomoell JAV, Krasheninnikov AV, Nordlund K, Keinonen J (2004) Ion ranges and irradiation-induced defects in multiwalled carbon nanotubes. J Appl Phys 96:2864

    Article  CAS  Google Scholar 

  49. Boudou JP, Curmi PA, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E (2009) High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ekimov EA, Kudryavtsev OS, Mordvinova NE, Lebedev OI, Vlasov II (2018) High-pressure synthesis of nanodiamond from adamantane: myth or reality? ChemNanoMat 4:269–273

    Article  CAS  Google Scholar 

  51. Yang GW, Wang JB, Liu QX (1998) Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J Phys Condens Matter 10:7923

    Article  CAS  Google Scholar 

  52. Pearce SRJ, Henley SJ, Claeyssens F, May PW, Hallam KR, Smith JA, Rosser KN (2004) Production of nanocrystalline diamond by laser ablation at the solid liquid interface. Diam Relat Mater 13:661–665

    Article  CAS  Google Scholar 

  53. Thongpool V, Phunpueok A, Piriyawong V, Limsuwan S (2013) Pulsed Laser Ablation of Graphite Target in Dimethyformamide. Energy Procedia 34:610–616

    Article  CAS  Google Scholar 

  54. Basso L, Gorrini F, Bazzanella N, Cazzanelli M, Dorigoni C, Bifone A, Miotello A (2018) The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient. Appl Phys A: Mater Sci Process 124:72

    Article  CAS  Google Scholar 

  55. Gorrini F, Cazzanelli M, Bazzanella N, Edla R, Gemmi M, Cappello V, David J, Dorigoni C, Bifone A, Miotello A (2016) On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci Rep 6:35244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miotello A, Kelly R (1999) Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl Phys A Mater Sci Process 69:S67–S73

    Article  CAS  Google Scholar 

  57. Sakka T, Saito K, Ogata YH (2002) Emission spectra of the species ablated from a solid target submerged in liquid: vibrational temperature of C2 molecules in water-confined geometry. Appl Surf Sci 246:197–198

    Google Scholar 

  58. Liang Z, Jia X, Ma HA, Zang CY, Zhu PW, Guan QF, Kanda H (2005) Synthesis of HPHT diamond containing high concentrations of nitrogen impurities using NaN3 as dopant in metal-carbon system. Diam Relat Mater 14:1932–1935

    Article  CAS  Google Scholar 

  59. Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C Photochem Rev 13:204–223

    Article  CAS  Google Scholar 

  60. Basso L, Gorrini F, Cazzanelli M, Bazzanella N, Bifone A, Miotello A (2018) All-optical single-step process for production of nanometric-sized fluorescent diamonds. Nanoscale 10:5738–5744

    Article  CAS  PubMed  Google Scholar 

  61. Basso L, Bazzanella N, Orlandi M, Miotello A (2019) On the route towards a facile fluorescent nanodiamonds laser-synthesis. Carbon 153:148–155

    Article  CAS  Google Scholar 

  62. Narayan J, Bhaumik A (2017) Novel synthesis and properties of pure and NV doped nanodiamonds and other nanostructures. Mater Res Lett 5:242–250

    Article  CAS  Google Scholar 

  63. Basharin AY, Dozhdikov VS, Kirillin AV, Turchaninov MA, Fokin LR (2010) Phase diagram with a region of liquid carbon-diamond metastable states. Phys Lett 36:559–562

    CAS  Google Scholar 

  64. Ionin AA, Kudryashov SI, Seleznev LV (2010) Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite. Phys Rev E 82(1)

  65. Ekimov EA, Lyapin SG, Boldyrev KN, Kondrin MV, Khmelnitskiy R, Gavva VA, Kotereva TV, Popova MN (2015) Germanium–vacancy color center in isotopically enriched diamonds synthesized at high pressures. JETP Lett 102:701–706

    Article  CAS  Google Scholar 

  66. Ekimov EA, Kondrina KM, Mordvinova NE, Lebedev OI, Pasternak DG, Vlasov II (in press) Russ Features of nanodiamond synthesis from adamantane at high pressures and temperatures. Russ J Inorg Chem

  67. Alkahtani MH, Alghannam F, Jiang L, Rampersaud AA, Brick R, Gomes CL, Scully MO, Hemmer PR (2018) Fluorescent nanodiamonds for luminescent thermometry in the biological transparency window. Opt Lett 43:3317

    Article  CAS  PubMed  Google Scholar 

  68. Ekimov EA, Kondrin MV, Kriyobok VS, Khomich AV, Vlasov II, Khmelnitskiy RA, Iwasaki T, Hatano M (2019) Effect of Si, Ge and Sn dopant elements on structure and photoluminescence of nano- and microdiamonds synthesized from organic compounds. Diam Relat Mater 93:75–83

    Article  CAS  Google Scholar 

  69. Butler JE, Sumant AV (2008) The CVD of Nanodiamond Materials. Chem Vap Depos 14:145–160

    Article  CAS  Google Scholar 

  70. Elke N, David S, Janine RM, Stefan G, Martin F, Matthias S, Christoph B (2011) Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys 13:025012

    Article  CAS  Google Scholar 

  71. Kudryavtsev OS, Ekimov EA, Romshin AM, Pasternak DG, Vlasov II (2018) Structure and Luminescence Properties of Nanonodiamonds Produced from Adamantane. Phys Status Solidi 215:1800252

    Article  CAS  Google Scholar 

  72. Danilenko VV (2004) On the History of the Discovery of Nanodiamond Synthesis. Phys Solid State 46:595–599

    Article  CAS  Google Scholar 

  73. Gruen D. M, Shenderova O. A, Vul A. Y. (2005) Synthesis properties and applications of ultrananocrystalline diamond. Ultrananocrystalline Diamond, NAII, 192

  74. Dolmatov VY (2018) The Influence of Detonation Synthesis Conditions on the Yield of Condensed Carbon and Detonation Nanodiamond Through the Example of Using TNT-RDX Explosive Mixture. J Superhard Mater 40:290–294

    Article  Google Scholar 

  75. Osawa E (2007) Recent progress and perspectives in single-digit nanodiamond. Diam Relat Mater 16:2018–2022

    Article  CAS  Google Scholar 

  76. Shenderova OA, Vlasov II, Turners S, Tendeloo GV, Orlinskii SB, Shiryae AA, Khomich AA, Sulyanov SN, Jelezko F, Wrachtrup J (2011) Nitrogen Control in Nanodiamond Produced by Detonation Shock-Wave-Assisted Synthesis. J Phys Chem C 115:14014–14024

    Article  CAS  Google Scholar 

  77. DeCarli P, Jamieson J (1961) Formation of Diamond by Explosive Shock. Science 133:1821–1824

    Article  CAS  PubMed  Google Scholar 

  78. Gruen DM, Shenderova OA, Vul AY (2005) Synthesis, Properties and Applications of Ultrananocrystalline diamond. NATO Sci Ser 192. https://doi.org/10.1007/1-4020-3322-2

  79. Faklaris O, Garrot D, Joshi V, Druon F, Boudou JP, Sauvage T, Georges P, Curmi PA, Treussart F (2008) Detection of Single Photoluminescent Diamond Nanoparticles in Cells and Study of the Internalization Pathway. Small 4:2236–2239

    Article  CAS  PubMed  Google Scholar 

  80. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YCJ (2005) Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity. Am Chem Soc 127:17604–17605

    Article  CAS  Google Scholar 

  81. Mita Y (2006) Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. Phys Rev B 53:11360–11364

    Article  Google Scholar 

  82. Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, Fu CC, Lim TS, Tzeng F, YK, Han CY, Fann W, (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3:284–288

    Article  CAS  PubMed  Google Scholar 

  83. Avalos V, Dannefaer S (2005) Positron annihilation studies of γ-irradiated type Ib and IIa diamonds. Diam Relat Mater 14:155–159

    Article  CAS  Google Scholar 

  84. Treussart F, Jacques V, Wu E, Gacoin T, Grangier P, Roch JF (2006) Photoluminescence of single colour defects in 50 nm diamond nanocrystals. Physica B Condens Matter 376–377:926–929

    Article  CAS  Google Scholar 

  85. Suarez-Kelly LP, Campbell AR, Rampersaud IV, Bumb A, Wang MS, Butchar JP, Tridandapani S, Yu L, Rampersaud AA, Carson WE (2017) Fluorescent nanodiamonds engage innate immune effector cells: 2 A potential vehicle for targeted anti-tumor immunotherapy. Nanomed Nanotechnol Biol Med 13:909–920

    Article  CAS  Google Scholar 

  86. Su LJ, Fang CY, Chang YT, Chen KM, Yu YC, Hsu JH, Chang HC (2013) Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds. Nanotechnology 24:315702

    Article  PubMed  CAS  Google Scholar 

  87. Campbell B, Choudhury W, Mainwood A, Newton M, Davies G (2002) Lattice damage caused by the irradiation of diamond. Nucl Instrum Methods A 476:680–685

    Article  CAS  Google Scholar 

  88. Havlik J, Petrakova V, Kucka J, Raabova H, Panek D, Stepan V, Cilova ZZ, Reineck P, Stursa J, Kucera J, Hruby M, Cigler P (2018) Extremely rapid isotropic irradiation of nanoparticles with ions generated in situ by a nuclear reaction. Nat Commun 9:4467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Capelli M, Heffernan AH, Ohshima T, Abe H, Jeske J, Hope A, Greentree AD, Reineck P, Gibson BC (2019) Increased nitrogen-vacancy centre creation yield in diamond through electron beam irradiation at high temperature. Carbon 143:714

    Article  CAS  Google Scholar 

  90. Dantelle G, Slablab A, Rondin L, Laine F, Carrel F, Bergonzo P, Perruchas S, Gacoin T, Treussart F, Roch JF (2010) Efficient production of NV colour centres in nanodiamonds using high-energy electron irradiation. J Lumin 130:1655–1658

    Article  CAS  Google Scholar 

  91. Isoya J, Kanda H, Uchida Y, Lawson SC, Yamasaki S, Itoh H, Morita Y (1992) EPR identification of the negatively charged vacancy in diamond. Physical Rev B Condens Matter 45:1436

    Article  CAS  Google Scholar 

  92. Simon CL, David F, Damian CH, Mark EN (1998) On the existence of positively charged single-substitutional nitrogen in diamond. J Phys Condens Matter 10:6171–6180

    Article  Google Scholar 

  93. Uzan-Saguy C, Cytermann C, Brener R, Richter V, Shaanan M, Kalish R (1995) Damage threshold for ion beam induced graphitization of diamond. Appl Phys Lett 67:1194–1196

    Article  CAS  Google Scholar 

  94. Shames AI, Smirnov AI, Milikisiyants S, Danilov EO, Nunn N, McGuire G, Torelli MD, Fluence SO (2017) Dependent Evolution of Paramagnetic Triplet Centers in e-Beam Irradiated Microcrystalline Ib Type HPHT Diamond. J Phys Chem C 121:22335–22346

    Article  CAS  Google Scholar 

  95. Mahfouz R, Floyd DL, Peng W, Choy JT, Loncar M, Bakr OM (2013) Size-controlled fluorescent nanodiamonds: a facile method of fabrication and color-center counting. Nanoscale 5:11776

    Article  CAS  PubMed  Google Scholar 

  96. Sakka T, Iwanaga S, Ogata YH, Matsunawa A, Takemoto T (2000) Laser ablation at solid–liquid interfaces: An approach from optical emission spectra. J Chem Phys 112:8645

    Article  CAS  Google Scholar 

  97. Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Lloyd CL, Hollenberg, (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528:1–45

    Article  CAS  Google Scholar 

  98. Zvyagin AV, Manson NB (2012) Optical and Spin Properties of Nitrogen-Vacancy Color Centers in Diamond Crystals, Nanodiamonds, and Proximity to Surfaces. Ultrananocrystalline Diamond 327–354

  99. Kohler J (1999) Magnetic resonance of a single molecular spin. Phys Rep 310:261–339

    Article  CAS  Google Scholar 

  100. Khachatryan A, Aloyan SG, May PW, Sargsyan R, Khachatryan VA, Baghdasaryan VS (2008) Graphite-to-diamond transformation induced by ultrasound cavitation. Diamond Relat Mater 17:931–936

    Article  CAS  Google Scholar 

  101. Wang ZX, Pan QY, Hu JG, Yong ZZ, Hu YQ, Zhu ZY (2007) Synthesis of diamond nanocrystals by double ions (40Ar+, C2H6+) bombardment. Wuli Xuebao 56:4829–4833

    CAS  Google Scholar 

  102. Gouzman I, Fuchs O, Lifshitz Y, Michaelson Sh, Hoffman A (2007) Nanodiamond growth on diamond by energetic plasma bombardment. Diam Relat Mater 16:762–766

    Article  CAS  Google Scholar 

  103. Yao Y, Liao MY, Wang ZG, Lifshitz Y, Lee ST (2005) Nucleation of diamond by pure carbon ion bombardment–a transmission electron microscopy study. Appl Phys Lett 87: 063103/1–063103/3

  104. Narayan J, Bhaumik A (2015) Novel phase of carbon, ferromagnetism, and conversion into diamond. J Appl Phys 118:215303

    Article  CAS  Google Scholar 

  105. Namba YJ (1992) Attempt to grow diamond phase carbon films from an organic solution. J Vac Sci Technol A 10:3368–3370

    Article  CAS  Google Scholar 

  106. Zhou K, Ke P, Li X, Zou Y, Wang A (2015) Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique. Appl Surf Sci 329:281–286

    Article  CAS  Google Scholar 

  107. Lim PK, Shen M, Cao W (2003) Temperature-dependence of carbon film growth by electrolysis of a methanol solution. Carbon 14:594–598

    Article  Google Scholar 

  108. Roy RK, Choi HW, Park SJ, Lee KR (2007) Surface energy of the plasma treated Si incorporated diamond-like carbon films. Diam Relat Mater 16:1732–1738

    Article  CAS  Google Scholar 

  109. Cas LD, Zeldin S, Nunn N, Torelli M, Shames A, Shenderova OA, Zaitsev AM (2019) From Fancy Blue to Red: Controlled Production of a Vibrant Color Spectrum of Fluorescent Diamond Particles. Adv Funct Mater 29:1808362

    Article  CAS  Google Scholar 

  110. Vaijayanthimala V, Tzeng YK, Chang HC, Li CL (2009) The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20:425103

    Article  PubMed  CAS  Google Scholar 

  111. Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H, Gesset C, Arnault JC, Thorel A, Boudou JP, Curmi PA, Treussart F (2009) Photoluminescent Diamond Nanoparticles for Cell Labeling: Study of the Uptake Mechanism in Mammalian Cells. ACS Nano 3:3955–3962

    Article  CAS  PubMed  Google Scholar 

  112. Fan CY, Vaijayanthimala V, Cheng CA, Yeh SH, Chang CF, Li CL, Chang HC (2011) The Exocytosis of Fluorescent Nanodiamond and Its Use as a Long-Term Cell Tracker. Small 7:3363–3370

    Article  CAS  Google Scholar 

  113. Wu TJ, Tzeng YK, Chang WW, Cheng CA, Kuo Y, Chien CH, Chang HC, Yu J (2013) Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol 8:682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hell SW (2015) Nanoscopy with Focused Light (Nobel Lecture). Angew. Chem. Int Ed 54:8054–8066

    Article  CAS  Google Scholar 

  115. Tzeng YK, Faklaris O, Chang BM, Kuo Y, Hsu JH, Chang HC (2011) Superresolution Imaging of Albumin-Conjugated Fluorescent Nanodiamonds in Cells by Stimulated Emission Depletion. Angew Chem Int Ed 50:2262–2265

    Article  CAS  Google Scholar 

  116. Arroyo-Camejo S, Adam MP, Besbes M, Hugonin JP, Jacques V, Greffet JJ, Roch JF, Hell SW, Treussart F (2013) Stimulated Emission Depletion Microscopy Resolves Individual Nitrogen Vacancy Centers in Diamond Nanocrystals. ACS Nano 7:10912–10919

    Article  CAS  PubMed  Google Scholar 

  117. Chen X, Zou C, Gong Z, Dong C, Guo G, Sun F (2015) Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci Appl 4:e230

    Article  CAS  Google Scholar 

  118. Chen EH, Gaathon O, Trusheim ME, Englund D (2013) Wide-Field Multispectral Super-Resolution Imaging Using Spin Dependent Fluorescence in Nanodiamonds. Nano Lett 13:2073–2077

    Article  CAS  PubMed  Google Scholar 

  119. Pfender M, Aslam N, Waldherr G, Neumann P, Wrachtrup J (2014) Single-spin stochastic optical reconstruction microscopy. Proc Natl Acad Sci U S A 111:14669–14674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jaque D, Vetrone F (2012) Luminescence Nanothermometry Nanoscale 4:4301–4326

    CAS  PubMed  Google Scholar 

  121. Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ, Lo PK, Park H, Lukin MD (2013) Nanometre-scale thermometry in a living cell. Nature 500:54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hsiao WW, Hui YY, Tsai PC, Chang HC (2016) Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing. Acc Chem Res 49:400–407

    Article  CAS  PubMed  Google Scholar 

  123. Acosta VM, Bauch E, Ledbetter MP, Waxman A, Bouchard LS, Budker D (2016) Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys Rev Lett 104:070801

    Article  CAS  Google Scholar 

  124. Guin U, Huang K, DiMase D, Carulli JM, Tehranipoor M, Makris Y (2014) Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain. Proc IEEE 102:1207

    Article  Google Scholar 

  125. Torelli MD, Nunn NA, Shenderova OA (2019) Perspective on fluorescent nanodiamond bioimaging. Nano Micro Small 1902151

  126. Los GV, Wood KA (2007) Novel Technology for Cell Imaging and Protein Analysis. Methods Mol Biol 356:195–208

    CAS  PubMed  Google Scholar 

  127. Nunn N, Torelli M, McGuire G, Shenderova O (2017) Nanodiamond: A high impact nanomaterial. Curr Opin Solid State Mater Sci 21:1–9

    Article  CAS  Google Scholar 

  128. Neu E, Hepp C, Hauschild M, Gsell S, Fischer M, Sternschulte H, Steinmüller-Nethl D, Schreck M, Becher C (2013) Low-temperature investigations of single silicon vacancy colour centres in diamond. New J Phys 15(4):043005

    Article  CAS  Google Scholar 

  129. Neu E, Steinmetz D, Riedrich-Möller J, Gsell S, Fischer M, Schreck M, Becher C (2011) Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. C New J Phys 13:025012

    Article  CAS  Google Scholar 

  130. Basso L, Gorrini Fe, Bazzanella N, Cazzanelli M, Dorigoni C, Bifone A, Miotello A (2017) The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient. Appl Phys A 124(10):1007

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director (CSIR-NEIST) for his permission to publish the paper. The funding from CSIR project (OLP-2055) is thankfully acknowledged.

Funding

The funding from CSIR (OLP-2055) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Anusuya Boruah: Literature survey, Investigation, Writing-original draft; Binoy K Saikia: Conceptualization, Visualization, Writing-review & editing, Supervision.

Corresponding author

Correspondence to Binoy K. Saikia.

Ethics declarations

Ethics Approval/Declarations

Necessary permissions were obtained for reproduction of figures from the sources.

Consent to Participate

Authors have their consent to participate in the paper.

Consent for Publication

Authors have their consent to publish the paper.

Conflicts of Interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boruah, A., Saikia, B.K. Synthesis, Characterization, Properties, and Novel Applications of Fluorescent Nanodiamonds. J Fluoresc 32, 863–885 (2022). https://doi.org/10.1007/s10895-022-02898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02898-2

Keywords

Navigation