Skip to main content
Log in

Zn2+-Schiff’s Base Complex as an “On–Off-On” Molecular Switch and a Fluorescence Probe for Cu2+ and Ag+ Ions

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The present study presents a thorough theoretical analysis of the electronic structure and conformational preference of Schiff’s base ligand N,N-bis(2-hydroxybenzilidene)-2,4,6-trimethyl benzene-1,3-diamine (H2L) and its metal complexes with Zn2+, Cu2+ and Ag+ ions. This study aims to investigate the behavior of H2L and the binuclear Zn2+ complex (1) as fluorescent probes for the detection of metal ions (Zn2+, Cu2+ and Ag+) using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The six conformers of the H2L ligand were optimized using the B3LYP/6–311 +  + G** level of theory, while the L−2-metal complexes were optimized by applying the B3LYP functional with the LANL2DZ/6–311 +  + G** mixed basis set. The gas-phase and solvated Enol-cis isomer (E-cis) was found to be the most stable species. The absorption spectra of the E-cis isomer and its metal complexes were simulated using B3LYP, CAM-B3LYP, M06-2X and ωB97X functionals with a 6–311 +  + G** basis set for C, O, N and H atoms and a LANL2DZ basis set for the metal ions (Zn2+, Cu2+ and Ag+). The computational results of the B3LYP functional were in excellent agreement with the experimental results. Hence, it was adopted for performing the emission calculations. The results indicated that metal complex (1) can act as a fluorescent chemosensor for the detection of Ag+ and Cu2+ ions through the mechanism of intermolecular charge transfer (ICT) and as a molecular switch “On–Off-On” via the replacement of Cu2+ by Ag+ ions, as proved experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material/ Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Pandey R et al (2011) Fluorescent zinc(II) complex exhibiting ‘on-off-on’ switching toward Cu2+ and Ag+ ions. Inorg. Chem. 50:3189–3197

    Article  CAS  Google Scholar 

  2. Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J (2018) Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 47(23):8842–8880

    Article  CAS  Google Scholar 

  3. Mahal A et al (2015) Synthesis characterization and antifungal activity of some metal complexes derived from quinoxaloylhydrazone. 3:1–8

    CAS  Google Scholar 

  4. Metzler CM, Cahill A, Metzler DE (1980) Equilibria and absorption spectra of Schiff bases. J Am Chem Soc 102:6075–6082

    Article  CAS  Google Scholar 

  5. Kajal A, Bala S, Kamboj S, Sharma N, Saini V (2013) Schiff Bases: A Versatile Pharmacophore. J Catal 2013, Article ID: 893512. https://doi.org/10.1155/2013/893512

  6. Jarrahpour A, Khalili D, De Clercq E, Salmi C, Brunel JM (2007) Synthesis, Antibacterial, Antifungal and Antiviral Activity Evaluation of Some New bis-Schiff Bases of Isatin and Their Derivatives. Molecules 12:1720–1730. https://doi.org/10.3390/12081720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khalil MMH, Aboaly MM, Ramadan RM (2005) Spectrochim. Acta (Part) 61:157

    Article  CAS  Google Scholar 

  8. Chantarasiri N, Ruangpornvisuti V, Muangsin N, Detsen H, Mananunsap T, Batiya C, Chaichit N (2004) J Mol Struct 701:93

    Article  CAS  Google Scholar 

  9. Soliman AA, Mohamed GG, Thermochim J (2004) Acta 421:151

    CAS  Google Scholar 

  10. Feringa BL, Browne WR (eds) (2011) Molecular Switches: Second. Completely Revised and Enlarged Edition; Wiley-VCH, Weinheim

    Google Scholar 

  11. Ogawa K, Kasahara Y, Ohtani Y, Harada J (1998) Crystal structure change for the thermochromy of n-salicylideneanilines. the first observation by x-ray diffraction. J Am Chem Soc 120:7107-7108

  12. Hadjoudis E, Mavridis IM (2004) Photochromism and Thermochromism of Schiff Bases in the Solid State: Structural Aspects. Chem Soc Rev 33:579–588

    CAS  PubMed  Google Scholar 

  13. Jimenez-Sanchez A, Rodriguez M, Métivier R, Ramos-Ortiz G, Maldonado JL, Rébolèes N, Farfán R, Nakatani K, Santillan R (2014) Synthesis and Crystal Structures of a Series of Schiff Bases: a Photo-, Solvato- and Acidochromic Compound. New J Chem 38:730–738

    Article  CAS  Google Scholar 

  14. Howard JAK, Probert MR (2014) Cutting-Edge Techniques Used for the Structural Investigation of Single Crystals. Science 343:1098–1102

    Article  CAS  Google Scholar 

  15. Carletta A, Dubois J, Tilborg A, Wouters J (2015) Solid-State Investigation on New Dimorphic Substituted N-Salicylidene Compound: Insights into its Thermochromic Behavior. Cryst Eng Comm 17:3509–3518

    Article  CAS  Google Scholar 

  16. Robert F, Naik AD, Tinant B, Robiette R, Garcia Y (2009) Insights into the Origin of Solid-State Photochromism and Thermochromism of N-Salicylideneanils: The Intriguing Case of Aminopyridines. Chem Eur J 15:4327–4342

    Article  CAS  Google Scholar 

  17. Sliwa M, Naumov P, Choi HJ, Nguyen QT, Dubus B, Delbaere S, Ruckebusch C (2011) Effects of a Self-Assembled Molecular Capsule on the Ultrafast Photodynamics of a Photochromic Salicylideneaniline Guest. Chem Phys Chem 12:1669–1672

    Article  CAS  Google Scholar 

  18. Hutchins KM, Dutta S, Loren BP, MacGillivray LR (2014) Co-Crystals of a Salicylideneaniline: Photochromism Involving Planar Dihedral Angles. Chem Mater 26:3042–3044

    Article  CAS  Google Scholar 

  19. Carletta A, Buol X, Leyssens T, Champagne B, Wouters J (2016) Polymorphic and Isomorphic Cocrystals of a N-Salicylidene-3-aminopyridine with Dicarboxylic Acids: Tuning of Solid-State Photo- and Thermochromism. J Phys Chem C 120:10001–10008

    Article  CAS  Google Scholar 

  20. Ziolek M, Kubicki J, Maciejewski A, Naskrecki R, Grabowska A (2006) Enol-keto tautomerism of aromatic photochromic schiff base n,n’-bis(salicylidene)-pphenylenediamine: ground state equilibrium and excited state deactivation studied by solvatochromic measurements on ultrafast time scale. J Chem Phys 124:124518.

  21. Bogdan E, Plaquet A, Antonov L, Rodriguez V, Ducasse L, Champagne B, Castet F (2010) Solvent Effects on the Second-Order Nonlinear Optical Responses in the Keto-Enol Equilibrium of a 2-Hydroxy-1-Naphthaldehyde Derivative. J Phys Chem C 114:12760–12768

    Article  CAS  Google Scholar 

  22. Sliwa M, Létard S, Malfant I, Nierlich M, Lacroix PG, Asahi T, Masuhara H, Yu P, Nakatani K (2005) Design, Synthesis, Structural and Nonlinear Optical Properties of Photochromic Crystals: Toward Reversible Molecular Switches. Chem Mater 17:4727–4735

    Article  CAS  Google Scholar 

  23. Ségerie A, Castet F, Kanoun MB, Plaquet A, Liégeois V, Champagne B (2011) Nonlinear optical switching behavior in the solid state: A theoretical investigation on anils. Chem Mater 23:3993–4001

    Article  Google Scholar 

  24. Castet F, Champagne B (2016) Switching of the Nonlinear Optical Responses of Anil Derivatives: from Dilute Solutions to the Solid State. In: Antonov L (ed) Tautomerism: Concepts and Applications in Science and Technology. Wiley-VCH, Weinheim, pp 175–202

    Chapter  Google Scholar 

  25. Antonov L (ed) (2013) Tautomerism: methods and theories. Wiley-VCH, Weinheim

  26. Antonov L (ed) (2016) Tautomerism: Concepts and applications in science and technology. Wiley-VCH, Weinheim

  27. Boonkitpatarakul K, Wang J, Niamnont N, Liu B, Mcdonald L, Pang Y, Sukwattanasinitt M (2016) Novel turn-on fluorescent sensors with mega stokes shifts for dual detection of Al3+ and Zn2+. ACS Sens 1:144–150

    Article  CAS  Google Scholar 

  28. Zhao J, Ji S, Chen Y, Guo H, Yang P (2012) Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys 14:8803–8817

    Article  CAS  Google Scholar 

  29. Padalkar VS, Seki S (2016) Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev 45:169

    Article  CAS  Google Scholar 

  30. Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli R, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc, Wallingford CT

  31. Andrienko GA (2016) Chemcraft 1.8. website: http://www.chemcraftprog.com (Date of access: 8 Aug 2016)

  32. Raghavachari K (2000) Perspective on “Density functional thermochemistry. III. The role of exact exchange” - Theor Chem Acc 103:361–363

  33. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation-energy density functionals of Becke and Lee Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  34. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Petersilka M, Gossmann U, Gross E (1996) Phys Rev Lett 76:1212

    Article  CAS  Google Scholar 

  36. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular-orbital methods 20. basis set for correlated wave functions. J Chem Phys 72:650–654

  37. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comb Chem 24:669–681

    Article  CAS  Google Scholar 

  38. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  39. Lee H, Hancock RD, Lee H (2013) Role of fluorophore − metal interaction in photoinduced electron transfer (PET) sensors: Time-dependent density functional theory (TDDFT) study. Phys Chem A 117(50):13345

    Article  CAS  Google Scholar 

  40. Nugent Joseph W, Lee Hyunjung, Lee Hee-Seung, Reibenspies Joseph H, Hancock Robert D (2013) Chem Commun 49:97491

    Google Scholar 

  41. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205

    Article  CAS  Google Scholar 

  42. Zang D, Zheng R, Wang Y, Lv J (2016) The ESIPT mechanism of dibenzimidazolo diimine sensor: A detailed TDDFT study. J Phys Org Chem 29:161

    Article  Google Scholar 

  43. Zhang Z, Wang C, Zhang ZZ, Luo Y, Sun S, Zhang G (2019) Cd(II) enhanced fluorescence and Zn(II) quenched fluorescence with phenylenevinylene terpyridine: A theoretical investigation. Spectrochim. Acta - Part A Mol Biomol Spectrosc 209:40

Download references

Acknowledgements

The authors acknowledge the technical support and funding by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. 140-130-1440. The authors are also grateful to the HPCC (Aziz Supercomputer) for the resources.

Funding

by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. 140–130-1440.

Author information

Authors and Affiliations

Authors

Contributions

Shaaban Elroby, Osman I Osman and Bashair Abdullah Banaser conceived, designed, performed the calculations enriched the research point, conducted the theoretical calculations and did the writing up of the manuscript; Abdesslem Jedidi and Walid I Hassan surveyed the literature and facilitated the research work; Saad Aziz helped with lab facilities and critical revision of the manuscript. All authors shared equally the revision of the final version.

Corresponding authors

Correspondence to Shaaban A. Elroby or Bashair Abdullah Banaser.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflicts of Interest/Competing Interests

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2547 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elroby, S.A., Banaser, B.A., Aziz, S.G. et al. Zn2+-Schiff’s Base Complex as an “On–Off-On” Molecular Switch and a Fluorescence Probe for Cu2+ and Ag+ Ions. J Fluoresc 32, 691–705 (2022). https://doi.org/10.1007/s10895-021-02864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02864-4

Keywords

Navigation