Skip to main content
Log in

Double 3-Ethyl-2,4-dimethylpyrrole Configured Fluorescent Dye with Fluorine-Boron as the Bridge

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Dipyrrolydiketones BF2 complex was synthesized and characterized by NMR, HRMS, and single crystal diffraction. In non-polar environment, this BF2 containing dye emitted bright blue-green fluorescence. No significant spectra shift was observed both in absorption and emission spectra, which indicates the insensitivity of absorption/emission toward environment. The alkyl substituted pyrrole rings lead to its highly emission character in solid state by enhancing the distance between dye molecules. Absolute quantum yields were determined to be 0.51–0.78/0.36 in selected organic medium and solid state, respectively. The emission dynamics was investigated by fluorescence lifetime and both monoexponential and bi-exponential decay was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W (2019) Coumarin-based small-molecule fluorescent chemosensors. Chem Rev 119:10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145

    Article  PubMed  CAS  Google Scholar 

  2. Mutoh K, Miyashita N, Arai K, Abe J (2019) Turn-on mode fluorescence switch by using negative photochromic imidazole dimer. J Am Chem Soc 141:5650–5654. https://doi.org/10.1021/jacs.9b01870

    Article  PubMed  CAS  Google Scholar 

  3. Kobayashi Y, Abe J (2016) Real-time dynamic hologram of a 3D object with fast photochromic molecules. Adv Optical Mater 4:1354–1357. https://doi.org/10.1002/adom.201600218

    Article  CAS  Google Scholar 

  4. Tian H (2010) Data processing on a unimolecular platform. Angew Chem Int Ed 49:4710–4712. https://doi.org/10.1002/anie.200906834

    Article  CAS  Google Scholar 

  5. Jin P, Jiao C, Guo Z, He Y, Zhu S, Tian H, Zhu W (2014) Rational design of a turn-on fluorescent sensor for α-ketoglutaric acid in a microfluidic chip. Chem Sci 5:4012–4016. https://doi.org/10.1039/C4SC01378F

    Article  CAS  Google Scholar 

  6. Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92:435–461. https://doi.org/10.1021/cr00011a005

    Article  CAS  Google Scholar 

  7. Li X, Kim SH, Son YA (2009) Optical properties of donor-π-(acceptor)n merocyanine dyes with dicyanovinylindane as acceptor group and triphenylamine as donor unit. Dyes Pigm 82:293–298. https://doi.org/10.1016/j.dyepig.2008.12.014

  8. Li X, Zhou Q, Heo G, Son YA (2018) 2,4-Dimethylpyrrole configured fluorine-boron complexes. Mol Cryst Liq Cryst 677:34–41. https://doi.org/10.1080/15421406.2019.1597509

    Article  CAS  Google Scholar 

  9. Mao J, Wang L, Dou W, Tang X, Yan Y, Liu W (2007) Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org Lett 9:4567–4570. https://doi.org/10.1021/ol7020687

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Yasuhir S, Takayuki H (2007) Cu(II)-Selective Green fluorescence of a rhodamine−diacetic acid conjugate. Org Lett 9:5039–5042. https://doi.org/10.1021/ol7022714

    Article  PubMed  CAS  Google Scholar 

  11. Li X, Han Y, Min K, Son YA (2018) Configuration of white light emission by courmarin and naphthalimide. Mol Cryst Liq Cryst 660:10–16. https://doi.org/10.1080/15421406.2018.1452861

    Article  CAS  Google Scholar 

  12. Li X, Shan D, Son YA (2016) High pseduo-stoke’s shift of a naphthalene-bisindolylmaleimide dye. J Nanosci Nanotechnol 16:856–860. https://doi.org/10.1166/jnn.2016.11779

    Article  PubMed  CAS  Google Scholar 

  13. Sheng Y, Ma J, Liu S, Wang ZhuC, Cheng Y (2016) Strong and reversible circularly polarized luminescence emission of a chiral 1,8-naphthalimide fluorophore induced by excimer emission and orderly aggregation. Chem Eur J 22:9519–9522. https://doi.org/10.1002/chem.201600891

    Article  PubMed  CAS  Google Scholar 

  14. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew Chem Int Ed 47:1184–1201. https://doi.org/10.1002/anie.200702070

    Article  CAS  Google Scholar 

  15. Li X, Han Y, Kim MJ, Son YA (2018) A BODIPY-based highly emissive dye with thiophene-based branch harvesting the light. Mol Cryst Liq Cryst 662:157–164. https://doi.org/10.1080/15421406.2018.1467613

    Article  CAS  Google Scholar 

  16. Yoshii R, Yamane H, Nagai A, Tanaka K, Taka H, Kita H, Chujo Y (2014) π-Conjugated polymers composed of BODIPY or aza-BODIPY derivatives exhibiting high electron mobility and low threshold voltage in electron-only devices. Macromolecules 47:2316–2323. https://doi.org/10.1021/ma5002047

    Article  CAS  Google Scholar 

  17. Rousseau T, Cravino A, Bura T, Ulrich G, Ziessel R, Roncali J (2009) BODIPY derivatives as donor materials for bulk heterojunction solar cells. Chem Commun 13:1673–1675. https://doi.org/10.1039/B822770E

    Article  Google Scholar 

  18. Olivier JH, Camerel F, Ulrich G, Barberá J, Ziessel R (2010) Luminescent ionic liquid crystals from self-assembled BODIPY disulfonate and imidazolium frameworks. Chem Eur J 16:7134–7142. https://doi.org/10.1002/chem.201000339

  19. Jokic T, Borisov SM, Saf R, Nielsen DA, Kühl M, Klimant I (2012) Highly photostable near-Infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes. Anal Chem 84:6723–6730. https://doi.org/10.1021/ac3011796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Aguiar A, Farinhas J, da Silva W, Susano M, Silva MR, Alcacer L, Kumar S, Brett CMA, Morgado J, Sobral AJFN (2020) Simple BODIPY dyes as suitable electron-donors for organic bulk heterojunction photovoltaic cells. Dyes Pigm 172:107842. https://doi.org/10.1016/j.dyepig.2019.107842

    Article  CAS  Google Scholar 

  21. Li X, Han Y, Sun S, Shan D, Ma X, He G, Mergu N, Park JS, Kim CH, Son YA (2020) A diaminomaleonitrile-appended BODIPY chemosensor for the selective detection of Cu2+ via oxidative cyclization and imaging in SiHa cells and zebrafish. Spectrochim Acta A 233:118179. https://doi.org/10.1016/j.saa.2020.118179

    Article  CAS  Google Scholar 

  22. Zh H, Fan J, Wang J, Mu H, Peng X (2014) An enhanced PET-based fluorescent probe with ultrasensitivity for imaging basal and elesclomol-induced HClO in cancer cells. J Am Chem Soc 136:12820–12823. https://doi.org/10.1021/ja505988g

    Article  CAS  Google Scholar 

  23. Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R (2010) Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem Int Ed 49:2869–2872. https://doi.org/10.1002/anie.200906120

    Article  CAS  Google Scholar 

  24. Boens N, Verbelen B, Ortiz MJ, Jiao LJ, Dehaen W (2019) Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coord Chem Rev 399:213024. https://doi.org/10.1016/j.ccr.2019.213024

  25. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77–88. https://doi.org/10.1039/C2CS35216H

    Article  PubMed  CAS  Google Scholar 

  26. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388. https://doi.org/10.1039/C1CS15113D

    Article  PubMed  CAS  Google Scholar 

  27. Chen W, Chen CL, Zhang Z, Chen YA, Chao WC, Su J, Tian H, Chou PT (2017) Snapshotting the excited-state planarization of chemically locked N, N′-disubstituted dihydrodibenzo[a, c]phenazines. J Am Chem Soc 139:1636–1644. https://doi.org/10.1021/jacs.6b11789

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Z, Wu YS, Tang KC, Chen CL, Ho JW, Su J, Tian H, Chou PT (2015) Excited-state conformational/electronic responses of saddle-shaped N, N′-disubstituted-dihydrodibenzo[a, c]phenazines: Wide-tuning emission from red to deep blue and white light combination. J Am Chem Soc 137:8509–8520. https://doi.org/10.1021/jacs.5b03491

    Article  PubMed  CAS  Google Scholar 

  29. Massue J, Frath D, Ulrich G, Retailleau P, Ziessel R (2012) Synthesis of luminescent 2-(2′-hydroxyphenyl)benzoxazole (HBO) borate complexes. Org Lett 14:230–233. https://doi.org/10.1021/ol203014e

    Article  PubMed  CAS  Google Scholar 

  30. Frath D, Massue J, Ulrich G, Ziessel R (2014) Luminescent materials: Locking π-conjugated and heterocyclic ligands with boron(III). Angew Chem Int Ed 53:2290–2310. https://doi.org/10.1002/anie.201305554

    Article  CAS  Google Scholar 

  31. Liao CW, Rajeswara RM, Sun SS (2015) Structural diversity of new solid-state luminophores based on quinoxaline-β-ketoiminate boron difluoride complexes with remarkable fluorescence switching properties. Chem Commun 51:2656–2659. https://doi.org/10.1039/C4CC08958H

    Article  CAS  Google Scholar 

  32. Li X, Han Y, Kim M, Son YA (2017) Absorption and emission investigation of boroncored dye. Mol Cryst Liq Cryst 659:64–70. https://doi.org/10.1080/15421406.2018.1450926

    Article  CAS  Google Scholar 

  33. Li X, Son YA (2014) Efficient luminescence from easily prepared fluorine–boron core complexes based on benzothiazole and benzoxazole. Dyes Pigm 107:182–187. https://doi.org/10.1016/j.dyepig.2014.04.001

    Article  CAS  Google Scholar 

  34. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517. https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  35. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764. https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 21772034) and the Program for Innovative Research Team in Science and Technology in Universities of Henan Province (grant No. 19IRTSTHN023, 20IRTSTHN005). We also thank the financial support from Henan Key Laboratory of Organic Functional Molecules and Drug Innovation.

Author information

Authors and Affiliations

Authors

Contributions

All the authors (Xinyu Guo, Yunfneg Chen, Ting Cui, Lina Xing, and Xiaochuan Li) made substantial contribution while preparing the manuscript.

Corresponding author

Correspondence to Xiaochuan Li.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4142 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Guo, X., Chen, Y. et al. Double 3-Ethyl-2,4-dimethylpyrrole Configured Fluorescent Dye with Fluorine-Boron as the Bridge. J Fluoresc 31, 1797–1803 (2021). https://doi.org/10.1007/s10895-021-02819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02819-9

Keywords

Navigation