Skip to main content
Log in

A New Fluorometric Dosimetry for Low-medium Gamma Radiation Doses

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, for the first-time, solutions of a Schiff base was evaluated as a possible chemical dosimeter for gamma-rays at low-medium dose ranges. The solutions of N-N’-bis(salicylidene)-1,3-propanediamine (LH2) were prepared at different ethanol/water compositions and the effect of various irradiation doses on the fluorometric response of these solutions were investigated. Fluorescence spectra of non-irradiated and irradiated solutions showed that fluorescence intensity of LH2ex = 375 nm, λem = 498 nm) decreased as the radiation dose increased. This decrease was observed over a wider dose range for the solutions that contain 40–60 % water. In order to increase the sensitivity of the method, LH2-Zn complexes were formed by adding Zn (II) to non-irradiated and irradiated LH2 solutions. After that, analytical parameters such as linearity, LOD, LOQ, repeatability and reproducibility were determined by measuring fluorescence spectra of these solutions (λex = 350 nm, λem = 444 nm). The performance characteristics of the chemical dosimetry system suggest that LH2 can be used as a dosimeter in dose range 0.04-5 kGy. The proposed method is simple, sensitive, reproducible and cost-effective, and can be useful in measuring doses in food irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Barkai-Golan R, Follett PA (2017) Sprout inhibition of tubers, bulbs, and roots by ionizing radiation. Irradiation for quality improvement, microbial safety and phytosanitation of fresh produce, 1st edn. Academic, London, pp 47–53. https://doi.org/10.1016/B978-0-12-811025-6.00005-7

    Book  Google Scholar 

  2. Franssena F, Gerard C, Cozma-Petruţ A, Vieira-Pinto M, Jambrak AR, Rowan N, Paulsen P, Rozycki M, Tysnes K, Rodriguez-Lazaro D, Robertson L (2019) Inactivation of parasite transmission stages: Efficacy of treatments on food of animal origin. Trends Food Sci Technol 83:114–128. https://doi.org/10.1016/j.tifs.2018.11.009

    Article  CAS  Google Scholar 

  3. Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJL, Till BJ (2015) Plant mutation breeding: current progress and future assessment. In: Janick J (ed) Plant Breed Rev, vol 39. Wiley, New Jersey, pp 23–88

    Google Scholar 

  4. Miller RB (2005) Overview of Food Irradiation Technology and Concepts. Electronic Irradiation of Foods: An Introduction to the Technology, 1st edn. Springer, New York, pp 17–42

  5. Woods RJ, Pikaev AK (1994) Radiation treatment of food. Applied radiation chemistry radiation processing, 1st edn. Wiley, New York, pp 419–455

    Google Scholar 

  6. Jiang L, Iwahashi H (2020) Current research on high-energy ionizing radiation for wastewater treatment and material synthesis. Environ Prog Sustain Energy 39:13294. https://doi.org/10.1002/ep.13294

    Article  CAS  Google Scholar 

  7. ISO/ASTM 52628:2020 (2020) Standard practice for dosimetry in radiation processing

  8. ISO/ASTM 51261:2013 (2013) Practice for calibration of routine dosimetry systems for radiation processing

  9. ISO/ASTM 52701:2013 (2013) Guide for performance characterization of dosimeters and dosimetry systems for use in radiation processing

  10. ISO/ASTM 52303:2015 (2015) Guide for absorbed-dose mapping in radiation processing facilities

  11. ISO/ASTM 51707:2015 (2015) Guide for estimation of measurement uncertainty in dosimetry for radiation processing

  12. Malik C, Meena RK, Rathi P, Singh B, Pandey A (2020) Effect of dopant concentration on luminescence properties of a phosphor KCaPO4: Dy. Radiat Phys Chem 168:108561. https://doi.org/10.1016/j.radphyschem.2019.108561

    Article  CAS  Google Scholar 

  13. Aliasgharzadeh A, Mohammadi A, Farhood B, Anaraki V, Mohseni M, Moradi H (2020) Improvement of the sensitivity of PASSAG polymer gel dosimeter by urea. Radiat Phys Chem 166:108470. https://doi.org/10.1016/j.radphyschem.2019.108470

    Article  CAS  Google Scholar 

  14. Beshir WB, Soliman YS, Abdel–Fattah AA, Fahim RA (2019) A new EPR dosimeter based on glutamic acid for radiation processing application. Radiat Environ Biophys 58:501–511. https://doi.org/10.1007/s00411-019-00808-y

    Article  CAS  PubMed  Google Scholar 

  15. Sayed M, Tabassum S, Shah NS, Khan JA, Shah LA, Rehman F, Khan SU, Khan HM, Ullah M (2019) Acid fuchsin dosimeter: a potential dosimeter for food irradiation dosimetry. J Food Meas Charact 13:707–715. https://doi.org/10.1007/s11694-018-9983-1

    Article  Google Scholar 

  16. Gafar SM, Abdel-Kader NM (2019) Radiation induced degradation of murexide dye in two media for possible use in dosimetric applications. Pigment Resin Technol 48:540–546. https://doi.org/10.1108/PRT-02-2019-0014

    Article  CAS  Google Scholar 

  17. Gafar SM, El-Kelany MA, El-Shawadfy SR (2018) Spectrophotometric properties of azo dye metal complex and its possible use as radiation dosimeter. J Radiat Res Appl Sci 11:190–194. https://doi.org/10.1016/j.jrras.2018.01.004

    Article  CAS  Google Scholar 

  18. Noorin ES, Feizi S, Dehaghi SM (2018) Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect. Radiochim Acta 106:695–702. https://doi.org/10.1515/ract-2017-2839

    Article  CAS  Google Scholar 

  19. Abdel-Fattah AA, Beshir WB, Hassan HM, Soliman YS (2017) Radiation-induced coloration of nitro blue tetrazolium gel dosimeter for low dose applications. Radiat Meas 100:18–26. https://doi.org/10.1016/j.radmeas.2017.04.001

    Article  CAS  Google Scholar 

  20. El-Kelany M, Gafar SM (2016) Preparation of radiation monitoring labels to gamma ray. Optik 127:6746–6753. https://doi.org/10.1016/j.ijleo.2016.05.001

    Article  CAS  Google Scholar 

  21. Dong X, Hu F, Liu Z, Zhang G, Zhang D (2015) A fluorescent turn-on low dose detection of gamma-ray radiation based on aggregation-induced emission. Chem Commun 51:3892–3895. https://doi.org/10.1039/c4cc10133b

    Article  CAS  Google Scholar 

  22. Feizi S, Ziaie F, Ghandi M (2015) Using polycarbonate dyed with dansyl chloride for dosimetry in radiation processing. Radiochim Acta 103:605–612. https://doi.org/10.1515/ract-2015-0001

    Article  CAS  Google Scholar 

  23. Prakasan V, Sanyal B, Chawla SP, Chander R, Sharma A (2014) Cyanocobalamin solutions as potential dosimeters in low-dose food irradiations. ‎Appl Radiat Isot 86:97–101

    Article  CAS  Google Scholar 

  24. Gafar SM, El-Ahdal MA (2014) Dosimetric characteristics of 2,6 di-nitro phenol for high dose dosimetry. Dyes Pigm 109:67–71. https://doi.org/10.1016/j.dyepig.2014.05.001

    Article  CAS  Google Scholar 

  25. Li Y, Lv C, Zhao Y, Sun Q, Li Y (2013) A new method for determining the absorbed dose in a radiation field by using a thiamine hydrochloride aqueous solution. Anal Sci 29:1189–1194. https://doi.org/10.2116/analsci.29.1189

    Article  CAS  PubMed  Google Scholar 

  26. Takeda K (2011) Chemical dosimetry system for γ-ray irradiation based on the formation of phenol from aqueous benzene solutions. Anal Sci 27:1189–1194. https://doi.org/10.2116/analsci.27.1213

    Article  Google Scholar 

  27. Liu Z, Xue W, Cai Z, Zhang G, Zhang D (2011) A facile and convenient fluorescence detection of gamma-ray radiation based on the aggregation-induced emission. J Mater Chem 21:14487. https://doi.org/10.1039/C1JM12400E

    Article  CAS  Google Scholar 

  28. Khan HM, Naz S, Tabassum S (2011) Dosimetric characteristics of aqueous solution of crystal violet for applications in food irradiation. J Radioanal Nucl Chem 289:225–229. https://doi.org/10.1007/s10967-011-1064-4

    Article  CAS  Google Scholar 

  29. Khan HM, Khan AA (2010) Characterization of aqueous rose bengal dye solution for the measurement of low doses of gamma radiation. J Radioanal Nucl Chem 284:37–42. doi:https://doi.org/10.1007/s10967-010-0485-9

    Article  CAS  Google Scholar 

  30. Medeirosa AS, Faria LO (2008) High gamma dose response of poly(vinylidene fluoride) copolymers. Nucl Instrum Methods Phys Res A 587:315–318. https://doi.org/10.1016/j.nima.2008.01.081

    Article  CAS  Google Scholar 

  31. Joseph P, Nairy R, Acharya S, Sanjeev G, Narayana Y (2014) Chemical dosimeters for electron beam dosimetry of microtron accelerator. J Radioanal Nucl Chem 302:1013–1019. https://doi.org/10.1007/s10967-014-3400-y

    Article  CAS  Google Scholar 

  32. El-Boraey HA, Abdel-Hakeem MA (2020) Facile synthesis, spectral, EPR, XRD and antimicrobial screening of some gamma-irradiated N’,N ‘’’-(1E, 2E)-1,2-diphenylethane-1,2-diylidene) bis(2-aminobenzohydrazide) metal complexes. J Mol Struct 1211:128086. https://doi.org/10.1016/j.molstruc.2020.128086

    Article  CAS  Google Scholar 

  33. El–Boraey HA, El–Gammal OA, Abdel Sattar NG (2020) Impact of gamma–ray irradiation on some aryl–amide–bridged Schiff–base complexes: spectral, TGA, XRD, and antioxidant properties. J Radioanal Nucl Chem 323:241–252. https://doi.org/10.1007/s10967-019-06946-3

    Article  CAS  Google Scholar 

  34. Aly S, El-Boraey HA (2019) Effect of gamma irradiation on spectral, XRD, SEM, DNA binding, molecular modling and antibacterial property of some (Z)-N-(furan-2-yl)methylene)-2-(phenylamino)acetohydrazide metal(II) complexes. J Mol Struct 1185:323–332. https://doi.org/10.1016/j.molstruc.2019.02.069

    Article  CAS  Google Scholar 

  35. El-Boraey HA, Mansour AI (2018) Synthesis, spectral and gamma ray irradiation studies on metal complexes of N,N′-naphthalene-1,8-diylbis(2-aminobenzamide). Inorg Nano-Met Chem 48:8–15. https://doi.org/10.1080/24701556.2017.1357588

    Article  CAS  Google Scholar 

  36. Aly RO, Farag RS, Hassan MM (2016) γ-Irradiation and characterization of synthesized methoxybenzylpyrimidine formimidate Schiff-base and some metal-complex derivatives. Arab J Chem 9:S852–S857. https://doi.org/10.1016/j.arabjc.2011.09.017

    Article  CAS  Google Scholar 

  37. Rai N, Malik BA (2018) Studies of some novel coordination compounds and their application in nanoparticle synthesis. GRIN Verlag, Munich, p 128

    Google Scholar 

  38. Ergun E, Ergun Ü, İleri Ö, Küçükmüzevir MF (2018) An investigation of some Schiff base derivatives as chemosensors for Zn(II): The performance characteristics and potential applications. Spectrochim Acta A Mol Biomol Spectrosc 203:273–286. https://doi.org/10.1016/j.saa.2018.05.116

    Article  CAS  PubMed  Google Scholar 

  39. Freeman GR (1974) Radiation chemistry of ethanol: a review of data on yields, reaction rate parameters, and spectral properties of transients NSRDS-NBS 48. National Bureau of Standards, Washington

    Book  Google Scholar 

  40. Jore D, Champion B, Kaouadji N, Jay-Gerin J-P, Ferradini C (1988) Radiolysis of ethanol and ethanol-water solutions: A tool for studying bioradical reactions. Radiat Phys Chem 32:443–448. https://doi.org/10.1016/1359-0197(88)90047-1

    Article  CAS  Google Scholar 

  41. Xujia Z, Jilan W, Yurong Z (1994) The reaction of alpha-hydroxyethyl radical in aqueous solution and ethyl alcohol. Radiat Phys Chem 43:335–338. https://doi.org/10.1016/0969-806X(94)90022-1

    Article  Google Scholar 

  42. Woods RJ, Pikaev AK (1994) Applied radiation chemistry radiation processing, 1st edn. Wiley, New York, pp 187–188

    Google Scholar 

  43. Woods RJ, Pikaev AK (1994) Applied radiation chemistry radiation processing, 1st edn. Wiley, New York, pp 168–170

    Google Scholar 

  44. Woods RJ, Pikaev AK (1994) Applied radiation chemistry radiation processing, 1st edn. Wiley, New York, p 150,175

    Google Scholar 

  45. Chu RDH (1999) Variations of influence quantities in industrial irradiators and their effect on dosimetry performance, Techniques for high dose dosimetry for industry, agriculture and medicine (Proc. Symp. Vienna, 1998), IAEA-TECDOC-1070, 111–117

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ece Ergun.

Ethics declarations

Conflicts of Interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.25 MB )

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergun, E. A New Fluorometric Dosimetry for Low-medium Gamma Radiation Doses. J Fluoresc 31, 941–950 (2021). https://doi.org/10.1007/s10895-021-02715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02715-2

Keywords

Navigation