Skip to main content
Log in

Spectroscopic Studies on the Interaction of Naphthyridines with DNA and Fluorescent Detection of DNA in Agarose Gel

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Four new naphthyridine derivatives (R1-R4) possessing amino acid or boronic acid moieties have been synthesized and characterized using 1H and 13C NMR, FT-IR, and mass spectral techniques. The mechanism of binding of these probes with calf thymus DNA (CT-DNA) has been delineated through UV-Vis, fluorescence, and circular dichroism (CD) spectral techniques along with thermodynamic and molecular docking studies. Small hypochromicity in absorption maximum of the probes without any shift in wavelength of absorption suggests groove binding mode of interaction of these probes with CT-DNA, confirmed by CD and 1H NMR spectral data competitive binding assay with ethidium bromide (EB). CT-DNA quenches the fluorescence of these probes via a static quenching mechanism. In the case of R1 and R4, the observed ΔHo < 0 and ΔSo > 0suggest that these probes interact with CT-DNA through H-bonding and hydrophobic interactions, while in the interaction of R2 and R3, van der Walls and H-boding forces are found to be dominant (ΔHo < 0 and ΔSo < 0). Results of molecular docking investigations corroborate well with that of spectral studies, and these probes bind in the minor groove of DNA. These probes are found to be effective fluorescent staining agents for DNA in agarose gel in gel electrophoresis experiment with sensitivity comparable to that of EB, and DNA amounts as low as 37.5 ng are visually detectable in the gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andaloussi M, Moreau E, Masurier N, Lacroix J, Gaudreault RC, Chezal JM, Laghdach AE, Canitrot D, Debiton E, Teulade JC, Chavignon O (2008) Novel imidazo[1,2-a]naphthyridinic systems (part 1): synthesis, antiproliferative and DNA-intercalating activities. Eur J Med Chem 43:2505–2517. https://doi.org/10.1016/j.ejmech.2008.02.017

    Article  CAS  PubMed  Google Scholar 

  2. Hawtin RE, Stockett DE, Byl JAW, McDowell RS, Tan N, Arkin MR, Conroy A, Yang W, Osheroff N, Fox JA (2010) Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One 5:e10186. https://doi.org/10.1371/journal.pone.0010186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kovalska VB, Volkova KD, Losytskyy MY, Tolmachev OI, Balanda AO, Yarmoluk SM (2006) 6,6-Disubstituted benzothiazole trimethine cyanines-newfluorescent dyes for DNA detection. Spectrochimi Acta A 65:271–277. https://doi.org/10.1016/j.saa.2005.10.042

    Article  CAS  Google Scholar 

  4. Erve A, Saoudi Y, Thirot S, Landras CG, Florent JC, Nguyen CH, Grierson DS, Popov AV (2006) BENA435, a new cell-permeant photoactivated green fluorescent DNA probe. Nucleic Acids Res 34:1–13. https://doi.org/10.1093/nar/gkl011

    Article  CAS  Google Scholar 

  5. Cong W, Chen M, Zhu Z, Liu Z, Nan J, Ye W, Ni M, Zhao T, Jin L (2013) A shortcut organic dye-based staining method for the detection of DNA both in agarose and polyacrylamide gel electrophoresis. Analyst 138:1187–1194. https://doi.org/10.1039/C2AN36079A

    Article  CAS  PubMed  Google Scholar 

  6. Sonmezoglu OA, Ozkay K (2015) A new organic dye-based staining for the detection of plant DNA in agarose gels. Nucleos Nucleot Nucl 34:515–522. https://doi.org/10.1080/15257770.2015.1017581

    Article  CAS  Google Scholar 

  7. Schmidt F, Schmidt J, Riechers A, Haase S, Bosserhoff AK, Heilmann J, Konig B (2010) DNA staining in agarose gels with Zn2+-cyclen-pyrene. Nucleos Nucleot Nucl 29:748–759. https://doi.org/10.1080/15257770.2010.515282

    Article  CAS  Google Scholar 

  8. Cong WT, He HZ, Zhu ZX, Ye CX, Yang XY, Cho JK, Jin LT, Li XK (2010) Improved conditions for silver-ammonia staining of DNA in polyacrylamide gel. Electrophoresis 31:1662–1665. https://doi.org/10.1002/elps.200900786

    Article  CAS  PubMed  Google Scholar 

  9. Chen M, Cong WT, Zhou X, Zhu ZX, Ye WJ, Ling J, Ni MW, Jin LT (2013) A method for sensitive staining of DNA in polyacrylamide gels using basic fuchsin. Bioanalysis 5:1545–1554. https://doi.org/10.4155/bio.13.113

    Article  CAS  PubMed  Google Scholar 

  10. Lunn G, Sansone EB (1987) Ethidium bromide:Distruction and decondamination of solution. Anal Biochem 162:453–458. https://doi.org/10.1016/0003-2697(87)90419-2

    Article  CAS  PubMed  Google Scholar 

  11. Okuma K, Koga T, Ozaki S, Suzuki Y, Horigami K, Nagahora N, Shioji K, Fukuda M, Deshimaru M (2014) One-pot synthesis of dibenzo[b,h][1,6]naphthyridines from 2-acetylaminobenzaldehyde: application to a fluorescent DNA-binding compound. Chem Commun 50:15525–15528. https://doi.org/10.1039/c4cc07807a

    Article  CAS  Google Scholar 

  12. Okuma K, Oba A, Kuramoto R, Iwashita H, Nagahora N, Shioji K, Noguchi R, Fukuda M (2017) Synthesis and fluorescence properties of 1,1-Dimethyl-1,4-dihydrodibenzo[b,h][1,6]naphthyridinium iodides: turn-on type detection of DNA. Eur J Org Chem 2017:6885–6888

    Article  CAS  Google Scholar 

  13. Huang Q, Fu WL (2005) Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis. Clin Chem Lab Med 43:841–842. https://doi.org/10.1515/CCLM.2005.141

    Article  CAS  PubMed  Google Scholar 

  14. Mahalakshmi G, Vennila KN, Selvakumar B, Rao PL, Malwade R, Deval S, Madhuri S, Seenivasaperumal M, Elango KP (2019) Spectroscopic investigations on DNA binding profile of two new naphthyridine carboxamides and their application as turn-on fluorescent DNA staining probes. J Biomol Struct Dyn 38:3443–3451. https://doi.org/10.1080/07391102.2019.1657501

    Article  CAS  PubMed  Google Scholar 

  15. Hu B, Deng L (2018) Catalytic asymmetric synthesis of trifluoromethylated g-amino acids through the umpolung addition of trifluoromethyl imines to carboxylic acid derivatives. Angew Chem Int Ed 57:2233–2237. https://doi.org/10.1002/ange.201710915

    Article  CAS  Google Scholar 

  16. Hyslop JF, Lovelock SL, Sutton PW, Brown KK, Allan WJB, Roiban GD (2018) Biocatalytic synthesis of chiral N-functionalized amino acids. Angew Chem Int Ed 57:13821–13824. https://doi.org/10.1002/ange.201806893

    Article  CAS  Google Scholar 

  17. Hutchinson I, Jennings SA, Vishnuvajjala BR, Westwell AD, Stevens MFG (2002) Antitumor benzothiazoles. 16.1 Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl)benzothiazole amino acid prodrugs. J Med Chem 45:744–747. https://doi.org/10.1021/jm011025r

    Article  CAS  PubMed  Google Scholar 

  18. Odonovan MR, Mee CD, Fenner S, Teasdale A, Phillips DH (2011) Boronic acids-a novel class of bacterial mutagen. Mutat Res 724:1–6. https://doi.org/10.1016/j.mrgentox.2011.05.006

    Article  CAS  Google Scholar 

  19. Yang W, Gao X, Wang B (2003) Boronic acid compounds as potential pharmaceutical agents. Med Res Rev 23:346–368. https://doi.org/10.1002/med.10043

    Article  CAS  PubMed  Google Scholar 

  20. Peng Q, Chen F, Zhong Z, Zhuo R (2010) Enhanced gene transfection capability of polyethylenimine by incorporating boronic acid groups. Chem Commun 46:5888–5890. https://doi.org/10.1039/c0cc00877j

    Article  CAS  Google Scholar 

  21. Ling X, Zhong W, Huang Q, Ni K (2008) Spectroscopic studies on the interaction of pazufloxacin with calf thymus DNA. J Photochem Photobiol B 93:172–176. https://doi.org/10.1016/j.jphotobiol.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  22. Gowda BG, Mallappa M, Shivakumar A, Nageshbabu R (2014) Spectrofluorimetric studies on the interaction of moxifloxacin with herring sperm DNA. Int J Pharm Sci 5:5276–5282. https://doi.org/10.13040/IJPSR.0975-8232

    Article  CAS  Google Scholar 

  23. Jamshidvand A, Sahihi M, Mirkhani V, Moghadam M, Baltork IM, Tangestaninejad S, Rudbari HA, Kargar H, Keshavarzi R, Gharaghani S (2018) Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: influence of substitutions on DNA-binding. J Mol Liq 253:61–71. https://doi.org/10.1016/j.molliq.2018.01.029

    Article  CAS  Google Scholar 

  24. Ozkan S, Tok TT, Baran AU, Akbay N (2019) Multispectroscopic and computational investigation of CT-DNA binding properties with hydroxybenzylidene containing tetrahydrocarbazole derivative. J Fluoresc 29:101–110. https://doi.org/10.1007/s10895-018-2314-4

    Article  CAS  PubMed  Google Scholar 

  25. Shahabadi N, Shiri F, Hadidi S (2019) Studies on the interaction of antibiotic drug rifampin with DNA and influence of bivalent metal ions on binding affinity. Spectrochim Acta A 219:195–201. https://doi.org/10.1016/j.saa.2019.04.059

    Article  CAS  Google Scholar 

  26. Niroomand S, Motlagh MK, Noroozifar M, Moodi A (2012) Spectroscopic studies on the binding of holmium-1,10-phenanthroline complex with DNA. J Photochem Photobiol B 117:132–139. https://doi.org/10.1016/j.photobiol.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  27. Rad JA, Jarrahpour A, Aseman MD, Nabavizadeh M, Pournejati R, Heidari HR, Turos E (2019) Design, synthesis, DNA binding, cytotoxicity, and molecular docking studies of amonafide-linked β-lactam. Chem Select 4:2741–2746. https://doi.org/10.1002/slct.201803785

    Article  CAS  Google Scholar 

  28. Bohlander PR, Wagenknecht HA (2013) Synthesis and evaluation of cyanine-styryldyes with enhanced photostability for fluorescent DNA staining. Org Biomol Chem 11:7458–7462. https://doi.org/10.1039/c3ob41717d

    Article  CAS  PubMed  Google Scholar 

  29. Bohlander PR, Wagenknecht HA (2015) Bright and photostable cyanine-styryl chromophores with green and red fluorescence colour for DNA staining. Methods Appl Fluoresc 3:044003. https://doi.org/10.1088/2050-6120/3/4/044003

    Article  CAS  PubMed  Google Scholar 

  30. Kaloyanova S, Trusova VM, Gorbenko GP, Deligiogiev T (2011) Synthesis and fluorescence characteristics of novel asymmetric cyanine dyes for DNA detection. J Photochem Photobiol A 217:147–156. https://doi.org/10.1016/j.jphotochem.2010.10.002

    Article  CAS  Google Scholar 

  31. Bi S, Zhou H, Wu J, Sun X (2018) Micronomicin/tobramycin binding with DNA:fluorescence studies using of ethidium bromide as a probe and molecular docking analysis. J Biomol Struct Dyn 37:1464–1476. https://doi.org/10.1080/07391102.2018.1461138

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Zhang G, Pan J, Xiong C, Gong D (2014) Intercalation binding of food antioxidant butylated hydroxanisole to calf thymus DNA. J Photochem Photobiol B 141:253–261. https://doi.org/10.1016/j.jphotobiol.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  33. Silva CM, Silva MM, Reis FS, Ruiz ATG, Carvalho JE, Santos JCC, Figueiredo IM, Alves RB, Modolo LV, Fatima A (2017) Studies on free radical scavenging, cancer cell antiproliferation, and calf thymus DNA interaction of Schiff bases. J Photochem Photobiol B 172:129–138. https://doi.org/10.1016/j.jphotobiol.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  34. Tian Z, Huang Y, Zhang Y, Song L, Qiao Y, Xu X, Wang C (2016) Spectroscopic and molecular modeling methods to study the interaction between naphthalimide-polyamine conjugates and DNA. J Photochem Photobiol B 158:1–15. https://doi.org/10.1016/j.jphotobiol.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  35. Sarwar T, Rehman SU, Husain MA, Ishqi HM, Tabish M (2015) Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies. Int J Biol Macromol 73:9–16. https://doi.org/10.1016/j.ijbiomac.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  36. Husain MA, Ishqi HM, Rehman SU, Sarwar T, Afrin S, Rahman Y, Tabish M (2017) Elucidating the interaction of sulindac with calf thymus DNA: biophysical and in silico molecular modelling approach. New J Chem 41:14924–14935. https://doi.org/10.1039/c7nj03698a

    Article  CAS  Google Scholar 

  37. Kumar A, Kumar A, Gupta RK, Paitandi RP, Singh KB, Trigun SK, Hundal MS, Pandey DS (2016) Cationic Ru(II), Rh(III) and Ir(III) complexes containing cyclic π-perimeter and 2-aminophenyl benzimidazole ligands: synthesis, molecular structure, DNA and protein binding, cytotoxicity and anticancer activity. J Organomet Chem 801:68–79. https://doi.org/10.1016/j.jorganchem.2015.10.008

    Article  CAS  Google Scholar 

  38. Darabi F, Hadadzadeh H, Simpson J, Shahpiri A (2016) A water-soluble Pd(II) complex with a terpyridine ligand: experimental and molecular modeling studies of the interaction with DNA and BSA; and in vitro cytotoxicity investigations against five human cancer cell lines. New J Chem 40:9081–9097. https://doi.org/10.1039/c6nj01880g

    Article  CAS  Google Scholar 

  39. Thomas RK, Sukumaran S, Sudarsanakumar C (2019) Photobehaviour and in vitro binding strategy of natural drug, chlorogenic acid with DNA: a case of groove binding. J Mol Struct 1178:62–72. https://doi.org/10.1016/j.molstruc.2018.10.019

    Article  CAS  Google Scholar 

  40. Suganthi M, Elango KP (2016) Synthesis, characterization and serum albumin binding studies of vitamin K3 derivatives. J Photochem Photobiol B 166:126–135. https://doi.org/10.1016/j.jphotobiol.2016.11.016

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of Data and Materials

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

G.Mahalakshmi: Investigation, Formal analysis and Writing; B.Selvakumar: Methodology; K.N.Vennila: Software and Analysis; P.Lakshmana Rao: Software and Analysis; S.Madhuri: Methodology, Software and Analysis; M.Seenivasaperumal: Software and Analysis; Kuppanagounder P. Elango: Conceptualization, Review, Supervision.

Corresponding author

Correspondence to Kuppanagounder P. Elango.

Ethics declarations

Competing Interests

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, G., Selvakumar, B., Vennila, K. et al. Spectroscopic Studies on the Interaction of Naphthyridines with DNA and Fluorescent Detection of DNA in Agarose Gel. J Fluoresc 31, 327–338 (2021). https://doi.org/10.1007/s10895-020-02658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02658-0

Keywords

Navigation